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Abstract

Aims For plants, elemental nutrients are important be-
lowground resources that sustain growth and survival.
To understand how tropical plant nutrient status re-
sponds to environmental variation, we asked whether
concentrations of nutrients in root and leaf tissues track
gradients in soil nutrient concentrations and if tissue
nutrient concentrations respond independently or in
concert to soil nutrient concentrations.

Methods We measured soil nutrient concentrations of
rhizosphere soil and root and leaf tissue elemental con-
centrations of saplings from 14 Angiosperm families in
montane tropical forest of Jianfengling, China. Using
mixed-effects models, we modeled the nutrient concen-
tration of plant tissues as a function of soil resources.
Results Of fourteen elements measured, seven —nitro-
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gen, boron, phosphorus, potassium, manganese, copper
and zinc— increased in concentrations in root and leaf
tissues with higher soil nutrient availability; two de-
creased —aluminum and carbon; three were invariant
—magnesium, sulfur, and calcium; and two —sodium
and iron— showed contrasting patterns between leaves
and roots. Eight elements necessary to leaf physiological
function, but also used in root functioning —nitrogen,
boron, magnesium phosphorus, sulfur, potassium, cal-
cium, manganese— were more concentrated in leaves
than roots. Additionally, most elements showed
tradeoffs in concentrations between roots and leaves.
Plant lineage (i.e. family) explained very little of the
variation about this overall trend.

Conclusions Overall, increases in tissue nutrient con-
centrations with soil fertility were subtle if present at all.
Thus, we conclude that tissue nutrients of juvenile trop-
ical trees have a high degree of elemental homeostasis
with local-scale soil nutrient content in Jianfengling.

Keywords Plant nutrient analysis - Leaf chemistry -
Root chemistry - Stoichiometry - Tropical forest -
Jianfengling - Responsible Editor: Philip John White

Introduction

The study of the mineral nutrition of plants has long
been a hallmark of the agricultural sciences (Aulie 1974;
Chapin 1980; Marschner 2012); however, understand-
ing how wild plants use and store nutrients is becoming
increasingly important as humans continue to alter
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biogeochemical cycles (Cleland and Harpole 2010;
Elser etal. 2007; Hobbie 2015). Plant growth and proper
cellular functioning are directly dependent on nutrient
uptake from the soil, and nutrient deficiencies can lead
to poor plant health and reduced performance (Aerts and
Chapin 1999; Chapin 1980; Marschner 2012), which
can affect ecosystem processes. Plants respond to
changes in soil nutrient fertility, and they regulate their
response based upon the flow of energy, water, and
nutrients within the plant (Pons et al. 1998). Therefore,
from an ecological perspective, quantifying the nutrient
status of plant organs can inform about whole plant
nutrition and physiology (Chapin 1980; Kramer and
Kozlowski 1979; Pons et al. 1998).

Organismal stoichiometry, or the study of the ele-
mental composition of organisms (Elser et al. 2000a,
2000b), examines how the chemical make-up of organ-
isms reflects the functioning of their biological parts
within the environment. Stoichiometric theory contends
that organisms generally have fixed nutritional require-
ments that result in a consistent stoichiometry (i.e.,
elemental composition). Although the stoichiometry of
plant tissues is more flexible and tends to reflect their
abiotic environment to a greater degree than in animals
(Elser et al. 2000b), some stoichiometric balance be-
tween the elemental concentration and composition in
plant tissues and their growth environment is expected,
in order to maintain optimal physiological functioning;
this balance is termed elemental homeostasis (Sterner
and Elser 2009; Sterner and Elser 2002), and the degree
to which it operates in wild plants, and varies with
environment or plant lineage, is not entirely known.
As such, elemental homeostasis remains the testable null
hypothesis for applied stoichiometric studies (Sterner
and Elser 2009, Fig. 1).

Fourteen to twenty elements are essential for plant
growth (depending on the species of plant and definition
used for essentiality) (Table 1). From a plant nutrition
perspective, these elements are best understood when
divided into four groups based on chemical behavior
and function (Mengel and Kirkby 2001; Marschner
2012). Group 1 elements (carbon, hydrogen, oxygen,
nitrogen, and sulfur)' are taken up as ions from the soil
solution or as gases from the atmosphere. They are the
principal constituent elements of organic matter assim-
ilated via oxidation-reduction reactions in plant cells.
Group 2 elements (phosphorus, boron, and silicon)' are

! Ttalicized elements are the ones measured in this study.
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obtained as inorganic anions or acids from the soil
solution and are found in similar forms within plant cells
(e.g., phosphate). Group 3 elements (potassium, sodium,
calcium, magnesium, manganese. and chlorine)' are
taken up from the soil in ionic form and occur in cells
as cationic compounds or chelates. Lastly, group 4
elements (iron, copper, zinc, and molybdenum) are ob-
tained as ions or chelates from the soil solution and are
used in the cell as ions that engage in various cellular
functions including electron transport. The purpose of
nutrients in groups 3 and 4 depends on their oxidation
state to create osmotic potentials and ionic gradients,
influencing structural changes to enzymes, and mediat-
ing cellular redox reactions (Marschner 2012).
Nitrogen (N) is arguably the most studied element in
terms of plant function and growth (Enriquez et al.

high

[ tissue nutrient ]

low

soil fertility

Fig. 1 Competing hypotheses regarding relationships of tissue
nutrient concentrations (y-axis) to soil fertility (x-axis). Note that
x and y-axes should be logarithmic when analyzing actual data
(Sterner and Elser 2002). Hypothesis A: tissue nutrient concentra-
tions track soil fertility in a linear fashion; for example, leaf and
root tissue N concentration increases in direct proportion to soil
available N. This is the null hypothesis of ecological stoichiomet-
ric theory (i.e., the “you are what you eat” hypothesis) (Sterner and
Elser 2002), where plant tissue chemistry changes in lockstep with
its chemical availability in the soil resource. Hypothesis B: plants
maintain homeostasis in tissue nutrient concentrations, indepen-
dently of resource availability in the soil (i.e., no change in tissue
nutrient concentration). Within that hypothetical framework, root
tissue nutrient concentrations may either be less than (solid brown
line) or greater than (dotted brown line) the tissue nutrient con-
centrations of leaves (dashed green line). The gray shaded areas
show that the slope of the relationship in hypothesis A may vary
(i.e., relationships of leaf and root tissue nutrient concentrations
may create intersecting lines)
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1993, Giisewell 2004, Elser et al. 2000b, see references
in Table 1). Leaf tissues are richer in nitrogen than stems
and roots (Pregitzer et al. 1997) because of the many
specialized proteins and enzymes required for photosyn-
thesis (Pons et al. 1998; Reich and Oleksyn 2004).
Moreover, leaf nitrogen generally is higher in species
with fast life-history strategies and high rates of photo-
synthesis and carboxylation, because they have more
proteins (e.g., thylakoid proteins) and enzymes (e.g.,
Rubisco) that are nitrogen-rich than species with slower
life-history strategies (Field and Mooney 1986;
Lambers and Poorter 1992; Reich et al. 1992; Wright
et al. 2004).

Variation in root nitrogen concentration appears to be
more related to construction costs in roots than acquisi-
tion performance (Maire et al. 2009; McCormack and
Iversen 2019; Bergmann et al. 2020); nevertheless, con-
centrations tend to reflect inorganic N-availability in the
soil and variation in life history and root functional
strategies. For example, root nitrogen concentrations
are related to rates of root respiration (Makita et al.
2009; Paradosio et al. 2020). Moreover, root tissue N
concentration and rates of N-uptake decrease with in-
creasing root length, area, and biomass (Hilbert 1990;
Raper Jretal. 1978; Taub and Wang 2008). Thus, as soil
nitrogen becomes more available, generally whole-plant
nitrogen increases, whole-plant and photosynthetic
nitrogen-use efficiency decreases, and plants allocate
more resources to root production (i.e., root to shoot
ratios increase) (Hilbert 1990). Yet, nitrogen pools with-
in the plant (i.e., leaf and root nitrogen) interplay with
one another and their respective carbohydrate pools, and
therefore root nitrogen may not precisely track soil
nitrogen availability (Chapin et al. 2011; Raper Jr et al.
1978).

Because nitrogen and phosphorus (P) are often lim-
iting macronutrients, examining their ratio and their
ratios to carbon can be informative (Elser et al. 2000a;
Sterner and Elser 2009). For balanced plant growth in
most terrestrial systems, plants absorb ten times as much
(mass-based) nitrogen as phosphorus (Aerts and Chapin
1999; Pons et al. 1998). Therefore, the N:P ratios in
leaves are a good indicator of which nutrient is limited.
In general, mass-based N:P ratios <14 (molar N:P ratios
<35.4) signify nitrogen limitation, whereas mass-based
N:P ratios >16 (molar ratios <40.0) correspond to phos-
phorus limitation with colimitation occurring at mass-
based ratios between 14 and 16 (molar ratios between
35.4 and 40.0) (Aerts and Chapin 1999; Giisewell
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2004). N:P mass-based ratios for terrestrial plants aver-
age 12-13 (molar ratios of 26.5-28.7), owing to the
ubiquity of nitrogen limitation in plants globally
(Glisewell 2004). Interestingly, average foliar phospho-
rus content is greater in temperate than in tropical trees
(averaging 1.4 vs. 0.75 mg g ' using data from 2962 tree
leaves in the TRY database Kattge et al. 2020, David
Ellsworth, personal communication), yet across biomes
a 2/3" scaling relationship between N and P exists
(Niklas 2006, Reich et al. 2009b, Wang et al. 2019).

Several other micronutrients, like calcium, magne-
sium, sulfur and other trace metals are needed in small
quantities by plants, but rarely limit their physiological
functioning (Aerts and Chapin 1999; Hawkesford et al.
2012) (Table 1). For example, iron is needed for plant
growth and photosynthesis, due to its role in facilitating
electron transport in light-reactions of leaves (Kramer
and Kozlowski 1979). The oxidation state of iron in the
soil interacts with decomposing organic matter and soil
nutrients to influence soil nutrient availability for uptake
through plant roots (Hall and Silver 2013; Silver et al.
2013). The absorption and concentration of the many
other trace metals (aluminum, magnesium, manganese,
zinc, copper, and molybdenum) in plant tissues behave
similarly and interact with one another and the electro-
chemical conductivity and chemical composition of the
soil (Andresen et al. 2018; Kramer and Kozlowski 1979;
Marschner 2012; Mengel and Kirkby 2001; Broadley
et al. 2012a; Broadley et al. 2012b) (see Table 1). How-
ever, an excess of micronutrients can become toxic, and
plants use a variety of mechanisms to avoid toxicity,
such as exclusion, restriction of transport from the roots,
retranslocation from the plant to roots, root exudation,
excretion from the leaves, or compartmentalization
(Marschner 2012).

Much of the knowledge about how tropical tree
tissue elemental concentrations vary with the environ-
ment has focused on variation in foliar chemistry, with
the majority of studies focusing solely on carbon, nitro-
gen, and phosphorus (Reich and Oleksyn 2004, Wright
et al. 2004, Niklas 2006, but see Asner and Martin
2016). Additional macronutrients, such as potassium,
magnesium, and calcium, have essential biological roles
within plants (Table 1), and their concentrations in plant
tissues interact with their availability in the soil environ-
ment to influence plant growth and forest development
(Bond 2010; Hawkesford et al. 2012). Several studies
have found that the elemental composition of wood
follows soil fertility in tropical forests (e.g., Heineman
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et al. 2016; Lira-Martins et al. 2019); yet the extent to
which root and leaf elemental concentrations vary with
soil fertility, and whether they coordinate in their re-
sponse, has received less attention. Here, we employ an
organismal stoichiometric perspective to compare the
concentration of fourteen elemental nutrients in root
and leaf tissues of a diverse sample of Angiosperms
across a local gradient in soil fertility. In particular, we
ask the following questions:

1) Do concentrations of elements in plant root and leaf
tissues increase with increasing soil fertility?

1If elemental homeostasis is strong in tropical forest
saplings, then tissue nutrient concentrations of both roots
and leaves should be invariant to differences in soil
nutrient concentrations. However, if the strength of ele-
mental homeostasis varies over a broad range of soil
conditions, more fertile soils may lead to higher concen-
trations of tissue nutrients (Fig. 1). Moreover, since roots
are the entry point for nutrients, we hypothesize that
they may track soil variation more closely than leaves.

2) How do concentrations of nutrients in roots relate to
those in leaves?

Plant strategies may result in a relatively consistent
tissue stoichiometry (i.e., homeostasis). However, due to
differences in function, tissues may accumulate nutri-
ents at different rates. For instance, nutrients associated
with photosynthetic performance (nitrogen, magnesium,
phosphorus) should have higher concentrations in leaf
than in root tissues, whereas elements with potential
toxicity and only secondary physiological function in
leaves (zinc, copper, boron) may accumulate at higher
concentrations in roots than in leaves. Based on their
physiological function in leaves and root tissues, hy-
potheses for each element are given in Table 1.

3) Do plant lineages vary in their leaf and root tissue
chemistry-soil environment relationships?

Because of the variation in Angiosperm plant form,
especially regarding roots (Valverde-Barrantes et al.
2017), the degree of whole-plant elemental homeostasis
may vary with plant lineage. Certain families, like the
Fabaceae and Magnoliaceae, have been shown to have
higher root N concentrations than others (Valverde-
Barrantes et al. 2017, Bergmann et al. 2020). Families

with higher concentrations of root N might have higher
concentrations of other elements in roots. We did not
formulate any specific expectation as to which families
might have more homeostatic regulation than others,
but instead employed a sampling design that sought to
target taxa across a broad range in plant form and
ecological life-history strategy (see Online Resource
2 Table 2) fo test the hypothesis that plant identity has
little effect on plant tissue elemental concentration- soil
nutrient concentration relationships.

Materials & methods
Study site

The Jianfengling forest of Hainan Island, China (18°23’
—18° 15'N & 108° 36" —109° 05'E) is a montane tropical
rain forest (600—1100 m elevation) on lateric and humic
yellow soils that are derived from porphyritic granite
(Wu 1995). The soils have low fertility and are charac-
terized by slow rates of mineral cycling when compared
to other tropical soils, such as Latisols or Ultisols, inter-
mediate levels of mineral leaching, and an exchangeable
base content of about 30 mL kg ' with some accumu-
lation of aluminum. The soils support a vegetation com-
munity of broadleaf evergreen trees intermixed with
palms and Podocarpaceae that reaches a canopy height
of 18 m. The average annual rainfall at Jianfengling
from 1965 to 1995 was about 2700 mm, and is seasonal,
with most of the rainfall occurring between May and
October (Zeng 1995).

Tissue collection

Leaf and fine root tissues were collected from juvenile
tropical trees with stem diameters of <10 cm at 1.3 m
height (hereafter saplings) from May to July of 2017.
Three hundred saplings of 50 tropical tree species (6
individuals per species), chosen to broadly represent 13
Angiosperm families (Online Resource 2 Table 2), were
sampled from across a 6.6 km gradient (along a road and
trails) spanning an area of secondary and primary trop-
ical forest in the Jianfengling forest reserve (Hogan et al.
2020b). The 13 plant families were chosen to target
variation in root morphologies (i.e., from thicker, flesh-
ier roots like those of Magnolids to thinner, more-
lignified roots like those in the Fagaceae) (Valverde-
Barrantes et al. 2017; Maherali 2017). All selected
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species were native species to the local flora, and are
considered a representative sample of the flora across
the 13 targeted families (Online Resource 2 Table 2; Xu
etal. 2015). Saplings were sampled in a balanced design
along the 6.6 km gradient collecting 3 individuals from
each half of the gradient (Hogan et al. 2020b). Three
mature, intact leaves in full sun (i.e., those located on the
transect edge) and five lateral entire root systems (i.e.,
those containing the first three root orders of fine-root
tissue, McCormack et al. 2015) were harvested from
each sapling. The collected root systems ranged from
0.3 to 3.0 mm in diameter and averaged 98 cm in root
length (Hogan et al. 2020b). The 6.6 km gradient was
representative of the landscape-scale variation in soil
texture and fertility for the greater Jianfengling Forest
Reserve (Xu et al. 2015; see Hogan et al. 2020b for
further details).

Soil collection & analyses

Following tissue collection, we collected ~1 kg of
surface soil (0—10 cm soil depth) from the excavated
area. Soils were air-dried for several weeks until
completely dry and sieved using a 2 mm mesh
(#10) sieve. For each sample, we used approximate-
ly 300 g of sieved soil for analysis (Guangzhou
Xinhua Agricultural Technical Development Limit-
ed Company, Guangzhou, Guangdong, China). Soil
texture was measured using the international me-
chanical soil classification standard. Soil pH was
measured using a glass electrode in a 2.5:1 water
to soil dilution. We measured soil organic matter
employing the high temperature, external-heat, po-
tassium dichromate oxidation volumetric method.
Total nitrogen content was measured using the
Kjeldahl-distillation titration method, and total phos-
phorus, available potassium (K), and exchangeable
sodium, calcium, and magnesium were all measured
using an ammonium-acetate extraction, followed by
flame atomic absorption spectrophotometry.
Sodium-hydroxide melting-flame atomic absorption
spectrophotometry was used to measure total soil K.
The alkali-solution diffusion method was used to
measure available (i.e., alkali-hydrolysable) soil N.
Soil available P was measured using by the hydro-
chloric acid—ammonium fluoride extraction and the
molybdenum antimony anti-coloring method, and
soil base saturation and cation exchange capacity
were measured with the ammonium acetate methods.

@ Springer

Tissue homogenization and elemental analysis

Root tissue samples were washed thoroughly, removing
soil, and both surfaces of leaf samples were wiped with a
paper towel. Leaf and root tissues were oven-dried at
70 °C for at least 48 h until completely dry. Tissue
samples were placed individually into sterile 5 mL
propeleyne screwcap vials and finely ground using a
Fisher Beadmill 24 multi-sample homogenizer (Fisher
Scientific, USA) with 5 mm stainless steel beads over
multiple 30-s cycles at high speed. Prior to homogeni-
zation, stainless steel beads were cleaned and sterilized
with ethanol to prevent contamination. This method is
commonly used and does not result in systematic bias in
tissue trace metal or other elemental concentrations
(Maia and Shaddox 2019). Homogenized leaf and root
tissues were microweighed (2-3 pg) into aluminum
micro tins on a Mettler Toledo XS3DU microbalance
(Metler Toledo, Columbus, OH, USA) and put through
continuous flow isotope ratio mass spectrometry and
elemental analysis using a Thermo Delta Plus GC-
IRMS (Thermo-Fisher, Waltham, MA, USA) for anal-
ysis of carbon and nitrogen. Agricultural macronutrient
analyses were done using wet-acid digestion (following
the methods in Jones Jr 2001) at the Soil Testing and
Plant Analysis Lab at Louisiana State University. Brief-
ly, one-half (0.5) grams of finely-ground plant tissue
was digested in 2.2 mL of deionized water using 5 mL
of concentrated Nitric Acid. The solution was heated for
2.75 h at 125 °C. At the end of the heating, 3 mL
hydrogen peroxide was added, and the solution was
cooled and filled to a volume of 20 mL with deionized
water. Elemental concentrations of aluminum (Al), bo-
ron (B), calcium (Ca), copper (Cu), iron (Fe), magne-
sium (Mg), manganese (Mn), molybdenum (Mo), sodi-
um (Na), phosphorus (P), potassium (K), sulfur (S), and
zinc (Zn) of digested tissue samples were determined
using inductively coupled plasma optical emission spec-
troscopy (Avio 500 ICP-OES, Perkin Elmer, Waltham,
MA, USA). Tissue concentrations of molybdenum were
mostly below the detectable range, so we did not include
them in our analyses.

Statistical analyses

A principal components analysis (PCA) was used to
identify variables that represent the main axes of varia-
tion in soil nutrients. Data were scaled and centered
before the PCA ordination. The PCA showed that the
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first two axes explained 61.8% of the variance. Three
soil variables: base saturation (soil BS), total nitrogen
(soil N), and total phosphorus (soil P) mostly character-
ized the soil differences among plant habitats (Online
Resource 2 Fig. 5). Variation in those three soil param-
eters encompasses the range of soil variability among
habitats, and they were only weakly correlated with one
another (Pearson’s r values all <0.38, Online Resource
2 Fig. 6). Therefore, we used these three soil variables as
representations of soil fertility.

To address the research question of whether tissue
nutrient concentrations track soil fertility (i.e., question
1), we used linear mixed-effects models (LMMs). Tissue
nutrient concentration data were log;o-transformed to
improve the normal distribution of error. We determined
that random intercept terms for both species and family
were justifiable given that we had a balanced sampling
design of six individuals per species for 50 species and
were interested in differences among species and by plant
lineage (i.e., family, question 3). LMMs were fit sepa-
rately for each of the fourteen tissue nutrients using the
‘Ime4’ package (Bates et al. 2015) in R v.3.6.0 (R Core
Team 2019). A saturated model was built including ran-
dom intercepts for species and family and fixed effects for
soil N, soil P, and soil BS, and their interactions with
organ type (i.e., leaf vs. root): log;o([Zissue Nutrient]) =
(Bs0ilN + [(3s0ilP + PsoilBS) * organ + 1 | family + 1 |
species. Model selection was then performed using the
‘step()’ function from the ‘ImerTest’ package
(Kuznetsova et al. 2017) in R v.3.6.0 (R Core Team
2019), which implements backward elimination of
random-effect terms where applicable, followed by back-
ward elimination of fixed effects based on model Akaike
Information Criterion. Final models were fit using
residualized maximum likelihood estimates, which ac-
counts for the number of model parameters when esti-
mating parameter values by applying the likelihood func-
tion over the least-squares residuals. Statistical signifi-
cance was determined using the Wald method.

To analyze if leaf nutrients directly tracked root
nutrients (i.e., passive transport of nutrients among plant
organs, question 2), we used a paired Wilcoxon signed-
rank test (Wilcoxon 1945). It is a nonparametric statis-
tical test that compares whether the population mean
ranks differ, where the null hypothesis is that the differ-
ence between pairs follows a symmetric distribution
around zero. It is often used as a nonparametric alterna-
tive to a paired Student’s T test to test if two samples
come from populations that have the same distribution,

because it does conform to the same statistical assump-
tions of normality as a paired Student’s T test. In the
context of our data, a non-statistically significant result
means that the ranks of tissue element concentrations
between leaves and roots of individual saplings do not
differ, and can thus be considered equal. On the other
hand, if the test statistic is significant at the .05 level of
statiscial significance, we interpret this to mean that
concentrations of elements between leaves and roots of
individual saplings are not equal.

Results

We first discuss the measured stoichiometry of tissues in
context. Then, we present results from the linear mixed-
effects models for each of the 14 elements analyzed.
Finally, we summarize results related to our three re-
search questions.

Carbon, nitrogen and phosphorus stoichiometric ratios

Average (+ standard error) molar C:N ratios were 44.8
+ 1.1 (range: 13—132) for roots, and 34.7+ 0.8 (range:
11-107) for leaves (Fig. 2a); mass-based C:N ratios
averaged 38.5+1.0 (range: 10.8-113.2) for roots and
29.7+0.7 (range: 9.8-92.0) for leaves. Molar ratios for
N:P were 92. 8 +2.4 (range: 13—434) for roots and 80.4
+ 1.2 (range:21-174) for leaves (Fig. 2b); mass-based
N:P ratios averaged 43.3+1.3 (range: 5.9-196.4) for
roots and 37.2+0.08 (range: 9.6-116.8) for leaves.
Lastly, molar ratios for C:P were 3869.4 +103.1
(range:600—-10,972) for roots and 2739.6 =+ 64.6 (range:
395-6230) for leaves (Fig. 2c); mass-based C:P ratios
averaged 1500.2 £39.7 (range: 223.4-4254.5) for roots
and 1060.3 £25.1 (range: 153.1-2510.5) for leaves.
Horizontal lines in Fig. 2 show global nutrient ratio
averages as reported by Sterner and Elser (2009)). The
high C:P and N:P ratios relative to the global averages
for terrestrial plants show that, generally, tissues were
phosphorus-poor (Fig. 2).

Tissue nutrients in relation to soil nutrients — Results
from LMMs

Of the fourteen tissue nutrients analyzed, half showed
increasing concentrations with increasing soil fertility;
those being nitrogen (Fig. 3b), boron (Fig. 3¢), phospho-
rus (Fig. 3g), potassium (Fig. 3i), manganese (Fig. 3k),
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copper (Fig. 3m), and zinc (Fig. 3n). Concentrations of
three of fourteen tissue nutrients: magnesium (Fig. 3e),
sulfur (Fig. 3h), and calcium (Fig. 3j) showed no rela-
tionship to soil fertility. Tissue concentrations of carbon
(Fig. 3a) and aluminum (Fig. 3f) showed a slightly de-
creasing trend with soil fertility. Two of fourteen tissue
nutrients showed divergent relationships between roots
and leaves (i.e. non-parallel slopes or strong interactions
of soil fertility and leaf type). With increasing soil P,
sodium content in leaf tissues showed a decreasing trend
but increased slightly in roots (Fig. 3d). Conversely, with
increasing soil P, iron concentrations in roots decreased
somewhat, but iron concentrations in leaves were invari-
ant (Fig. 31).

Tissue carbon concentration responded weakly and
positively to soil N (3 coefficient of 0.01), more-strongly
negatively to soil P (3 of —0.26), and did not vary with soil
BS. Leaf carbon concentrations were statsistically lower
than root carbon concentrations (Fig. 3a, (3 of —0.03).
There was a minimal degree of interfamilial variation in
tissue C concentrations, with species in the Lauraceae,
Sapotaceae, Anacardiaceae, Pentaphylacaceae,
Sapindaceae, Juglandaceae, and Fagaceae having slightly
higher tissue carbon concentrations than those in the
Theaceae, Ebenaceae, Burseraceae, Rutaceae, Moraceae,
Annonaceae and Magnoliaceae (Online Resource 1 S1).

Tissue nitrogen concentration did not respond to soil
N; that is, the best-fitting LMM for tissue nitrogen did
not include soil N as an explanatory variable but includ-
ed soil P instead. Soil P had a relatively-strong positive
effect on tissue N (3 of 0.49, Fig. 3b). Leaf tissue N
concentrations were higher than root N concentrations
(f of 0.05), and there was a weak interaction between
organ type and soil BS (3 negligible), with increasing
soil BS slightly decreasing leaf N. Interfamilial variation
in tissue N was greater than that of tissue C. The
Rutaceae and Lauraceae had significantly more N in
tissues. The Pentaphylacaceae, Fagaceae and Theaceae
had significantly less N in tissues than the remaining 9
Angiosperm families, whose random effect confidence
intervals included zero (Online Resource 1 S2).

Soil P had a strong effect on tissue phosphorus (3 of
1.71, Fig. 3g), soil N had a minute negative effect on
tissue phosphorus (3 of —0.07), and soil BS had little
effect on tissue phosphorus (3 negligible). Tissue phos-
phorus concentration was greater in leaves than in roots
(f of 0.12). Among families, species in Rutaceae had
slightly greater tissue phosphorus concentrations, and
species in the Fagaceae, Pentaphylacaceae, and
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Theaceae had slightly less tissue phosphorus than the
remaining 11 Angiosperm families (Online Resource 1
S7).

Boron, potassium, manganese, copper, and zinc
concentrations tended to increase in tissues with soil
nutrient availability. In the case of boron (Online
Resource 1 S3), soil P was removed as an explanatory
variable during model selection. Soil N had a weak,
but statistically insignificant, positive effect on tissue
boron concentrations (3 of 0.03), which were greater
in leaves than roots (3 0f 0.47, Fig. 3c). Species in the
Moraceae had greater than average tissue boron con-
centrations, while Lauraceae species had less than
average tissue boron concentrations. Tissue potassi-
um concentrations responded positively to soil P (3 of
0.95, Fig. 3i), negatively to soil N (f of —0.07), and
were unaffected by soil BS ({3 negligible). Potassium
was greater in leaf than in root tissues (3 of 0.11, Fig.
31), with species in the Rutaceae, and Moraceae hav-
ing significantly greater potassium concentrations and
species in the Pentaphylacaceae, Theaceae and
Fagaceae having significantly lower concentrations
than the familial average (Online Resource 1, S9).
Concerning manganese concentrations in tissues, soil
P had a relatively-strong positive effect (3 of 1.72,
Fig. 3k), and soil N had a weak negative effect (3 of
—0.19). Additionally, manganese concentrations were
greater in leaves than they were in roots (3 of 0.39,
Fig. 3K). Considerable intraspecific variation existed
in leaf and root manganese concentrations, however
all families were statistically equal except for the
Moraceae which had greater magnesium concentra-
tions than the other 13 plant families (Online Resource
1, S11). Copper concentrations in plant tissues
responded positively to increasing soil P (3 of 0.90,
Fig. 3m), and weakly negatively to soil N (3 of
—0.09). Soil BS had no strong effect on tissue copper
concentrations ({3 of 0), but was included in the best-
fitting model. Contrary to many of the other nutrients,
copper concentration was greater in root tissues than
leaf tissues (f of —0.34 for leaf type). Additionally,
copper concentrations were higher in the Rutaceae
and Lauraceae, and lower in the Theaceae and
Pentaphylacaceae than in the other 10 plant families
(Online Resource 1, S13). Lastly, zinc concentration
was also greater in roots than in leaves (3 of —0.48 for
leaf type, Fig. 3n). Increasing soil N led to a decrease
in leaf zinc concentration (interaction-term 3 of
—0.13). Lauraceae and Rutaceae had statistically
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Fig. 2 Box and whisker plots for foliar and root elemental molar
ratios for C, N, and P for 300 individuals sampled in the
Jianfengling Forest Reserve, China. Vertical axes are log-scale.
Boxplots show means (center line), interquartile ranges (boxes),
and the smallest and largest values within 1.5 times the

greater than average amounts of tissue zinc, and
Theaceae and Fagaceae had statistically less than av-
erage amounts of tissue zinc among all plant families
(Online Resource 1, S14).

Concentrations of elements in plant tissues with soil

fertility

Three nutrients showed no relationships with soil nutri-
ent availability, those being magnesium, sulfur, and
calcium. Soil N had a slight positive effect on tissue
magnesium concentration (3 of 0.06); however, it led to
a decrease in leaf magnesium (interaction-term 3 of
—0.07). Amounts of magnesium were found to be higher
in leaf than roots tissues ( of 0.23). Species in the
Lauraceae, Sapotaceae, and Fagaceae had significantly
lower than familial average trends, and species in the
Moraceae had significantly higher than familial average
trends in tissue magnesium concentrations (Online
Resource 1, S5). The best-fitting model for sulfur in-
cluded a fixed effects for soil BS (3 negligable) and
organ type (3 of 0.03 for leaves) and random intercept
terms for family and species, thus we can understand
plant sulfur concentration to be invariant with changes
in soil nutrients (Fig. 3h). Again, species in the
Lauraceae and Rutaceae had greater than average
amounts of tissue sulfur, while those from the Fagaceae
had less (Online Resource 1 S8). A slight negative effect
of soil N (3 of —0.06) and negligible positive effect (3
0f 0.01) of soil BS on tissue calcium emerged from the
LMM fit for calcium (Online Resource 1, S10). How-
ever, calcium concentrations of tissue were invariable
with environmental variation in soil P (Fig. 3j). Calcium

interquartile range (whiskers). Points are >1.5 times outside the
interquartile ranges. Horizontal dashed lines represent the global
average of foliar C:N, C:P, and N:P molar ratios, as reported by
Sterner and Elser (2009) (36, 968, and 28, respectively)

concentrations were greater in leaves than in roots (3 of
0.40 for leaves). Plants in the Sapotaceae and Fagaceae
families had lower than average calcium concentrations.

Finally, two plant nutrients, sodium, and iron exhib-
ited diverging trends among roots and leaves. For
sodium tissue concentrations, soil N had a positive
effect (3 of 0.06) and soil P had a non-significant
positive effect (3 of 1.01, but with confidence interval
overlapping zero). Sodium concentrations were higher
in leaves than in roots (3 0f 0.23), and both increases in
soil P (interaction term (3 of —3.89) and soil BS (inter-
action term 3 of —0.01) caused decreases in leaf sodium
concentration (Fig. 3d, Online Resource 1, S4).
Amounts of iron in root tissues decreased with increas-
ing soil P (3 of —0.94), and iron was higher in root
tissues than in leaf tissues (3 of —1.67 for organ type
leaf). Soil N interacted to increase leaf iron concentra-
tions (3 of 0.11), while soil BS had a negative effect (3
of —0.01), hence the slight difference in slopes in Fig. 31
(Online Resource 1, S12).

Comparing element concentrations in roots and leaves

We found significant differences in the ranks of
tissue nutrient concentrations between plant organs.
Wilcoxon probabilities were highly statistically sig-
nificant (all p values << 0.001) for carbon (Fig. 4a),
nitrogen (Fig. 4b), sodium (Fig. 4d), magnesium
(Fig. 4e), phosphorus (Fig. 4g), potassium (Fig.
4i), calcium (Fig. 4j), manganese (Fig. 4k), iron
(Fig. 41), zinc (Fig. 4n). For those nutrients, ranks
of leaf and root nutrient concentrations were not
symmetric, in that when the concentration of an
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nutrients (roots in brown and leaves in green) and linear mixed
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element was relatively high in root tissue, it tended
to be low in leaf tissue, and vice versa. Ranks of
tissue nutrient concentrations were not significantly
different for boron (Fig. 4c), aluminum (Fig. 4f),
sulfur (Fig. 4h), and Copper (Fig. 4m).

Variation in relationships due to plant family
and species

Random effect variance of fitted LMMSs, attributed to
family and species identity, was low ranging from <0.1
for carbon to 0.21 for aluminum, and averaging 0.06
(values are log;o-transformed tissue concentration
units). Thus, in all LMMs, the random effects of species
and family accounted for a small amount of variation
about model fits, although in all cases where models
included random effects for families and species, the
amount variation explained by families was slightly
greater than the variation explained by species (i.e.,
Tramily > Tspecies)- 1Ntraclass correlations (ICC), or the
proportion of variation explained by the random effect
grouping structure of the model (i.e., between species
and family groupings), ranged from 0.10 for iron to 0.52
for magnesium, averaging 0.34 across all 14 models
(Online Resource 1), signifying that tissue nutrient mea-
surements within random effects groupings were weak-
ly to moderately related (note that ICC values can be
interpreted like Pearson correlation coefficients). Yet, in
some instances, statistically significant deviations from
model averages were observed for plant families, and to
a lesser degree, for individual species (see caterpillar
plots in Online Resource 1).

Discussion

Contextualizing the nutrient concentration of tissues
from Jianfengling saplings

Tropical forests such as Jianfengling are typically P-
limited systems (Vitousek 1984; Vitousek and Sanford
Jr 1986), therefore we first discuss root and leaf tissue
nutrient concentrations from Jianfengling in relation to
global averages and other forests in China. First,
Jackson et al. (1997) reported global nutrient pools for
fine roots to be 488+9.8 mg g ' carbon, 11.7+
0.7 mg g ' nitrogen, 1.1+0.2 mg g ' phosphorus, 3.0
+0.6mgg ' potassium, 4.1 + 1.0 mg g ' calcium, 1.4+
0.3 mg g ' magnesium, and 0.9+0.1 mg g ' sulfur,

with living roots containing more nutrients than dead
roots (Gordon and Jackson 2000). Second, in a meta-
analysis of root decomposition rates by Silver and Miya
(2001), the initial nutrient concentration of fine roots
(those <2 mm in diameter) was 0.94+0.05 mg g ' ni-
trogen, 0.5+0. 1 mg g ' phosphorus, 2.3+0.4 mg g’
calcium, with mass-based C:N ratios averaging 67 + 6.
In Jianfengling, we recorded nutrient concentrations of
449+24 mg g ' carbon, 13.9+£0.3 mg g nitrogen,
3.6 +<0.1 mg g' phosphorus, 5.9+0.2 mg g "' potas-
sium, 2.8 £0.2 mg g ' calcium, 1.7 +<0.1 mg g ' mag-
nesium, and 1.4+<0.1 mg g' sulfur in surface entire
root systems for 300 juvenile trees (Figs. 3 & 4). Thus,
tissue nutrient concentrations in the juvenile trees of
Jianfengling are similar in carbon and nitrogen to values
reported in the literature, but much lower than reported
values for phosphorus. The other macronutrients (i.e.,
potassium, calcium, magnesium, and sulfur) were com-
parable to reported values.

Concentrations of other elements, like cations and
metals, were lower than have been reported in the
literature. Specifically, Zhang et al. (2012) summarized
leaf tissue nutrient data from 702 plant species (of 66
families) from 91 sites across China. Data from this
study find higher aluminum (1.03+0.14 vs. 0.83 +
0.07 mg g "), and manganese (0.76+0.04 vs. 0.23+
0.02 mg g ') concentrations in leaves than reported by
Zhang et al. (2012), but lower sodium (0.16 +0.02 vs.
8.91+0.94 mg g "), iron (0.10£0.01 vs. 0.57 £
0.06 mg g '), calcium (5.49+0.19 vs. 15.5+
0.57 mg g '), sulfur (1.40+0.04 vs. 3.26+
0.23 mg g ), potassium (7.76+0.30 vs. 13.05+
0.42 mg g '), phosphorus (0.47+0.01 vs. 1.41+
0.05 mg g '), and nitrogen (16.13+0.33 vs. 19.96+
0.43 mg g ). One explanation for these differences is
that soils at Jianfengling, Hainan Island China are more-
highly weathered than most of the soils on mainland
China, receiving substantially more rainfall than most
parts of China. High levels of aluminum and manganese
in the tissue of saplings from Jianfengling point to acidic
soil conditions with low amounts of available nutrients
(Wu 1995; Xu et al. 2015),which are typical of tropical
montane forests with weathered soils.

On tissue carbon concentration, Ma et al. (2018)
report in a global meta-analysis (containing >20,000
measurements) that leaf C concentration is equal to or
greater than root C concentration, measuring 470 +
40mg g ' and 460+ 50 mg g ', respectively. We found
leaf C concentration to measure, on average, over 2%
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lower than in root C concentration (426 £40 mg g~ for sampled (Online Resource 1, Fig. 3a). One explanation

leaves and 449 =20 mg g ' C for roots). Although these for this difference could be plant ontogeny; we were

differences are not large, they are statistical significant at working with saplings, which tend to be photosynthate-

the individual level (Wilcoxyn sign ranked test p value limited due to their understory habitats and relatively

highly significant, Fig. 4a), and across the 50 species we small total leaf areas, which could create a greater
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difference in tissue carbon concentrations of leaves and
roots (i.e., a greater degree of whole-plant carbon limi-
tation). Secondly, differences could exist because of
variation in relative amounts of the common C-
containing molecules, such as lignin, cellulose, sugars,
proteins, and lipids, of the leaf and root tissues of
saplings relative to adult trees (Hobbie and Werner
2004). Indeed, Martin et al. (2013) found that stem
wood of tropical saplings in Panama had 21% less
hemicellulose and 36% more lignin, making them about
2% greater in carbon content than conspecific adult
tress. Additionally, differences in plant laible carbon
allocation varies with tree age, with younger trees allo-
cating relatively more carbon belowground than their
established adult, non-light limited counterparts (Chapin
et al. 1990; Dietze et al. 2014; Kozlowski 1992; Raich
et al. 2014).

Do concentrations of elements in plant root, and leaf
tissue track increases soil fertility?

Our first research question asked whether root and leaf
tissue elemental concentrations increase with increasing
soil fertility. Concentrations of N and P in both root and
leaf tissue increased with more soil P, but tissue C
concentration showed a slight decreasing trend (Fig.
3a). Eight of the other eleven elements we studied
(excluding C, N, and P) showed relationships with soil
fertility. The three nutrients that did not display links to
soil fertility were boron, aluminum, and sulfur, which
have either unclear or substitutable functions within the
plant (Table 1) and may be toxic at high levels. The
eight nutrients that responded to some degree to varia-
tion in soil nutrient concentrations were sodium, mag-
nesium, potassium, calcium, manganese, iron, copper
and zinc (Fig. 3), which are all cations with unique,
indispensable functions within the plant cell (Table 1).
Literature-based hypotheses for changes in tissue
nutrient concentrations to an increase in soil fertility
(Table 1) were correct for half (7 of 14) of the elements
we studied. For nitrogen, phosphorus, and potassium,
hypothesized increases in tissue nutrient concentrations
with increasing soil fertility were supported by the data
(Fig. 3b, g, 1). For carbon and aluminum, the hypotheses
of decreasing tissue concentrations with increasing soil
fertility were confirmed (Fig. 3a, f), and additionally, for
sulfur, iron, and copper we were able to confirm the
literature-based invariant relationships in tissue nutrient
concentrations to variation in soil nutrients (Table 1).

On the other hand, we observed no change in tissue
concentrations of magnesium, where the literature pre-
dicted an increase (Fig. 3e), and we found a decrease in
leaf sodium with increasing soil P in opposition to the
hypothesized increase, although concentrations in root
tissues did increase (Fig. 3d). We observed a slight
increase in tissue zinc concentrations with increasing
soil nutrient concentrations (Fig. 3n), despite the litera-
ture supporting the hypothesis that concentrations
should decrease. However this trend was driven by only
a few datapoints for plants collected in soils with high
soil BS. Similarly, we observed very small increases in
tissue boron and manganese concentrations with soil N
and P, respectively (Fig. 3c, k), where the literature
supported that relationships should be invariant.

Furthermore, responses of tissue nutrients to soil
fertility did not vary systematically with Marschner’s
4-group nutrient classification (Marschner 2012; Kirkby
2012; Mengel and Kirkby 2001). Recall that group 1
nutrients are taken up as ions, group 2 nutrients are
absorbed as inorganic anions or acids, group 3 nutrients
are mostly taken up as cationic compounds (excepting
chlorine which is group 3 anion), and group 4 nutrients
are actively taken up in their ionic forms. At least one
element from all four groups (nitrogen — group 1, boron
and phosphorus — group 2, potassium and manganese —
group 3, and copper and zinc — group 4) increased in
concentration in plant tissues with increasing soil fertil-
ity. Carbon (a group 1 nutrient) and aluminum (a group
4 nutrient) were the two that decreased slightly with
increasing soil fertility. Those showing no change were
magnesium, calcium (both group 3 nutrients) and sulfur
(a group 1 nutrient). Sodium (a group 3 nutrient) and
iron (a group 4 nutrient) interacted with soil fertility to
show diverging trends between root and leaf tissue
concentrations with increasing soil fertility.

Tissue phosphorus showed the strongest increasing
trend with soil P availability (Fig. 3e). This suggests that
plants in Jianfengling are P-limited (Fig. 2, Vitousek
1984; Vitousek and Sanford Jr 1986) and that adding P
to the soil would have the greatest effect on plant growth
and likely increase tissue nutrient concentrations.
Indeed, SJ Wright (2019) reported a strong effect of P-
addition on leaf tissue P concentration (Hedges g effect
size of 1.7) in a meta-analysis of nutrient addition ex-
periments in tropical forests. However, responses of
tropical tree tissue stoichiomety to increases in P prob-
ably varies with species sensitivities (Turner et al.
2018), tree size (Wright et al. 2018), and by plant organ
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(e.g., roots, stems and leaves). Wurzburger and Wright
(2015) reported clear increases in fine root tissue P
concentration when adding P in a lowland Panamanian
forest, with roots decreasing in morphological traits
associated with nutrient acquisitiveness per the “do it
yourself” root functional strategy (sensu Bergmann et al.
2020); that is, roots had less total biomass, decreased
in root length, but increased in specific root length at
high soil P concentrations. At Jianfengling, we found
similar morphological shifts in the root systems from
which tissue nutrients were measured, where diameter
was narrower, and specific root length (SRL) and root
system branching intensity were greater in lower soil
fertility areas than in areas with more soil nutrients;
increased concentrations of soil bases and P were sig-
nificantly related to increased SRL (Hogan et al. 2020b).

Tissue nitrogen showed a similar pattern to phospho-
rus, increasing with soil P availability, but to a lesser
degree (Fig. 3). Soil N was not backward selected as a
fixed effect in the model selection process for the LMM
for tissue N concentrations, suggesting that saplings are
more limited by soil P than by soil N. However,
Wurzburger and Wright (2015) reported no change in
root tissue N with nutrient addition in a lowland Pana-
manian forest. The variety of strategies by which, and
sources from which, plants obtain N, along with the
demand for and homeostatic movement of N within
the plant, make the interpretability of root N concentra-
tion, by itself, difficult, although some progress on
conceptualizing root N in relation to root economis is
being made (McCormack and Iversen 2019; Bergmann
etal. 2020). Ultimately N concentrations in leaf and root
tissues depends on a suite of abiotic (e.g., diffuse nutri-
ent flows in the soil) and biotic biogeochemical process-
es (e.g., microbial and fungal nutrient mobilization in
the soil), which interact with plant and soil stoichiome-
try (Aerts and Chapin 1999; Brown 1978; Elser et al.
2000b; Gordon and Jackson 2000; Giisewell 2004;
Marschner 2012).

How do concentrations of nutrients in roots relate
to those in leaves?

We found that concentrations of carbon, sodium, iron,
copper, and zinc were greater in roots than leaves (Fig.
3), whereas concentrations of nitrogen, boron, magne-
sium, phosphorus, sulfur, potassium, calcium and man-
ganese were greater in leaves than in roots. Elements
that had higher concentrations in leaves than in roots,
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excluding magnesium, calcium, and sulfur, tended to
increase in concentration in leaves with increasing levels
of soil nutrients. This supports the idea that, at least for
some elements, there is within-plant homeostatic ele-
mental regulation. The most supportive evidence we
found for homeostatic regulation came from the results
of the Wilcoxon sign-ranked test, which was significant
for carbon, nitrogen, phosphorus and seven of the eight,
above mentioned elements that responded to variation in
soil nutrient concentration. The evidence that when
element concentrations are high in roots, they tend to
be lower in leaves, and vice versa, points to selective
plant use, movement and storage of these elements
within plant tissues and cells. Copper was the lone case
of an element that responded to soil nutrient availability,
but was not regulated within the plant. Active within-
plant elemental regulation may be responsible for these
patterns, as we have discussed, however alternative
mechanisms could result in similar patterns. First, roots
can act as a filter for certain elements (e.g., boron,
aluminum, iron, copper and zinc), excluding their
movment into plants (Marschner 2012), actively
uptaking other less toxic cations in their place (i.e.
selecting against their uptake, Kahle 1993) or though
complex alterations of soil biogeochemistry and pH via
root exudates (Jones and Darrah 1994). Moreover, cer-
tain elements may accumulate in leaves (e.g., calcium, if
they are in compounds that are phloem-insoluble or too
large for phloem transport) (Hill 1980).

Do plant lineages vary in their leaf and root tissue
chemistry-soil environment relationships?

Among all elemental concentrations in tissues, there
was considerable variation within families and species.
In other words, among plant variation far exceeded any
intraspecific or intrafamilial variation (0 for random
effects <0.1, except for aluminum where o, was 0.21,
Supplement 1). Yet, for each element, certain families
differed statistically from the fitted trend for all families.
There was no interfamilial or intraspecific variation (i.e.,
no statistically significant effects for levels of random
family or species intercept terms) in modeled tissue
carbon concentration; however, there was for each of
the 13 other elements studied (see caterpillar plots in
Online Resource 1). For example, plants in the Theaceae
had higher tissue aluminum concentrations than the
modeled trend (Online Resource 1, S6) Thus, in certain
cases, plant lineage does modulate the relationship
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strength between leaf and root tissue chemistry and the
soil environment, which is already subtle at the local
environment and individual plant scales. This is likely
due to slight differences in the physiological functioning
among plant lineages, which are the result of their
evolved biological differences and variation in life-
history strategies. Plant evolutionary history has strong-
ly influenced root morphologies (Valverde-Barrantes
et al. 2017), which likely has direct effects on nutrient
uptake physiologies, soil habitat preferences, or mecha-
nisms for dealing with soil element toxicitiy (Marschner
2012). However, with an incomplete sampling of the
Angiosperm phylogeny, it is difficult to thoroughly
assess the role of plant lineage, as deeper nodes in the
phylogeny probably drive patterns of nutrient concen-
tration variation among taxa (Kerkhoff et al. 2006). For
example, variation for some nutrients, especially these
involved in cell wall structures (carbon, calcium, mag-
nesium) occurs among plant orders, rather than families
or species (Broadley et al. 2004). In our case, any slight
differences in physiology (e.g., nutrient requirement or
use) seem to be overshadowed by larger nutrient con-
straints of the soil environment itself. This result is
congruent with previous research that has found a wide
range in tropical tree tissue nutrient concentrations
(Hattenschwiler et al. 2008; Townsend et al. 2007) and
their stoichiometries (Townsend et al. 2008; Elser et al.
2010).

In summary, using data on root and leaf tissues of
300 saplings of 50 species from across a representative
range of local habitat variability in soils of a tropical
montane forest, we found stable tissue concentrations
for half of the 14 elements we considered. Therefore, at
least some-degree of elemental homeostasis, that is, the
maintenance of constant levels of tissue nutrients despite
changes in the nutrient concentration of the external soil
environment, was observed. In cases where plant tissue
nutrients either decreased or increased with soil nutrient
levels, trends tended to be weak, potentially because of
nutrient limitation in highly leached tropical forest soils.
Thus, the physiological functioning of saplings in
the montane tropical forest at Jianfengling, China is
stoichiometrically constrained across environmental
variation (i.e., has a broad stoichiometric knife-edge, at
least with respect to the range of soil environments
studied here). However, their stoichiometry does re-
spond to variation in environment and resource quantity
with potential for nutrient regulation between plant or-
gans (i.e., roots and leaves), especially for elements that

have an critical physiological functions in leaves (e.g.,
nitrogen, phosphorus, potassium, magnesium, and
manganese).

Supplementary Information The online version contains sup-
plementary material available at https:/doi.org/10.1007/s11104-
020-04802-y.
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