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Abstract

Tropical forest understory regeneration occurs rapidly after disturbance with

compositional trajectories that depend on species availability and environmen-

tal conditions. To predict future tropical forest regeneration dynamics, we

need a deeper understanding of how pulse disturbance events, like hurricanes,

interact with environmental variability to affect understory demography and

composition. We examined fern and sapling mortality, recruitment, and com-

munity composition in relation to solar radiation and soil moisture using 17

years of forest dynamics data (2003–2019) from the Canopy Trimming Experi-

ment in the Luquillo Experimental Forest, Puerto Rico. Solar radiation

increased 150% and soil moisture increased 40% following canopy trimming of

experimental plots relative to control plots. All plots were disturbed in 2017 by

Hurricanes Irma and Maria, so experimentally trimmed plots presented the

opportunity to study the effects of multiple hurricanes, while control plots iso-

lated the effects of a single natural hurricane. Recruitment rates maximized at

0.14 individuals/plot/month for ferns and 0.20 stems/plot/month for saplings.

J. Aaron Hogan and Joanne M. Sharpe contributed equally to the work reported here.

Received: 17 March 2022 Accepted: 24 March 2022

DOI: 10.1002/ecs2.4150

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2022 The Authors. Ecosphere published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecosphere. 2022;13:e4150. https://onlinelibrary.wiley.com/r/ecs2 1 of 23
https://doi.org/10.1002/ecs2.4150

https://orcid.org/0000-0001-9806-3074
https://orcid.org/0000-0002-5275-1901
https://orcid.org/0000-0002-6996-978X
https://orcid.org/0000-0003-3007-5540
https://orcid.org/0000-0002-8179-0731
https://orcid.org/0000-0002-6774-4560
mailto:hogan.jaaron@ufl.edu
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/ecs2
https://doi.org/10.1002/ecs2.4150
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecs2.4150&domain=pdf&date_stamp=2022-07-13


Recruitment and mortality were distributed more evenly over the 17 years of

monitoring in experimentally trimmed plots than in control plots; however,

following Hurricane Maria demographic rates substantially increased in con-

trol plots only. In experimentally trimmed plots, the largest community com-

positional shifts occurred as a result of the trimming events, and

compositional changes were greatest for control plots after Hurricane Maria in

2017. Pioneer tree and fern species increased in abundance in response to both

simulated and natural hurricanes. Following Hurricane Maria, two dominant

pioneer species, Cyathea arborea and Cecropia schreberiana, recruited abun-

dantly, but only in control plots. In trimmed plots, increased solar radiation

and soil moisture shifted understory species composition steadily toward pio-

neer and secondary-successional species, with soil moisture interacting

strongly with canopy trimming. Thus, both solar radiation and soil moisture

are environmental drivers affecting pioneer species recruitment following dis-

turbance, which interact with canopy opening following hurricanes. Our

results suggest that if hurricane disturbances increase in frequency and sever-

ity, as suggested by climate change predictions, the understory regeneration of

late-successional species, such as Manilkara bidentata and Sloanea berteroana,

which prefer deeper shade and slightly drier soil microsites, may become

imperiled.
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INTRODUCTION

Cyclonic windstorms (named hurricanes in the Western
Hemisphere) are disturbances that affect terrestrial eco-
systems in space and time (Bellingham et al., 1995;
Brokaw & Grear, 1991; Lugo, 2008; Tanner et al., 1991;
Uriarte et al., 2004). Hurricane occurrence over millennia
has shaped ecosystem structure and species composition
in tropical, subtropical, and temperate coastal and inland
areas, leading to selection pressure on affected biota
(Griffith et al., 2008; Hogan et al., 2018; Ibanez et al.,
2019; McLaren et al., 2019; Tanner & Bellingham, 2006;
Zimmerman et al., 1994). Hurricanes, sudden and cata-
strophic forest disturbance events, are both impressive
and ecologically dramatic because they produce visible
ecosystem change and can induce rapid fluctuations in
the demographics of biota and abiotic conditions (Hogan
et al., 2018; Patrick et al., 2022; Uriarte et al., 2019).
Structural and species compositional changes following
hurricanes can affect emergent ecosystem function
(e.g., biogeochemical cycles, carbon uptake, erosion rates,
and hydrology) and are thus important to understand to

predict potential long-term ecosystem responses to cli-
mate change (Hogan et al., 2020; Lin et al., 2020;
Michener et al., 1997; Uriarte et al., 2004).

Forests differ in resistance (i.e., the magnitude of per-
turbation from historical baselines given a particular dis-
turbance event) and resilience (i.e., time and ability to
recover to a comparable or baseline forest state) to hurri-
canes (Attiwill, 1994; Laurance & Curran, 2008; Nikinmaa
et al., 2020; Peterson, 2019; Webb, 1958). This is primarily
a function of the historical disturbance regime of the forest
(i.e., the prevailing frequency and severity of disturbance
events), and the time since the last disturbance (i.e., the
ecosystem state at the time of the hurricane) (Hogan
et al., 2018; Ibanez et al., 2019; Lin et al., 2020;
Peterson, 2019), although tree species diversity has been
shown to modulate disturbance severity (Tanner &
Bellingham, 2006; Zimmerman et al., 1994). The timing,
frequency, and severity of cyclone disturbances are key to
shaping the long-term forest resistance and resilience
states via their effects on forest damage and subsequent
forest succession, which interact with longer-term
anthropogenic-driven environmental change pressures
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(e.g., climate warming and elevated CO2) on ecosystems
(Dale et al., 2001; Everham & Brokaw, 1996; Johnstone
et al., 2016; Lugo, 2008). As a result, individual hurricane
disturbances can be understood as distinct disturbance
pulses overlaid on less dramatic, but longer-term environ-
mental change pressures (Brokaw et al., 2012).

Hurricanes are expected to become an increasingly
important force for ecological and social disturbance in a
future affected by climate change. Recent work has shown
that hurricanes are slowing in transit speed (Kossin, 2018),
increasing in wind speed and intensity (Elsner et al., 2008;
Kossin et al., 2013; Sobel et al., 2016; Velden et al., 2017),
increasing in frequency (Emanuel, 2013), and disturbing
previously unaffected areas (Altman et al., 2018), espe-
cially as they migrate further inland in coastal areas
(Wang & Toumi, 2021). Therefore, it is likely that
hurricanes and their interactions with other climate-
change-driven disturbances (e.g., drought) will become
increasingly important agents of change for forest dynam-
ics, shaping forest structure and composition at local and
global scales (Lin et al., 2020; McDowell et al., 2018). In
this context, it is critical to understand how an increased
frequency or severity of hurricanes will affect forest ecosys-
tems in the coming decades and how other environmental
drivers exacerbate or mitigate hurricane effects (Hogan
et al., 2020).

Hurricane disturbances in forest ecosystems induce
vegetation dynamism through their direct effects
(i.e., damage) and by altering environmental conditions
(e.g., solar radiation, soil moisture, debris deposition, and
nutrient cycling) (Everham & Brokaw, 1996; Lugo, 2008).
Individual hurricane disturbances represent distinct
events that drastically influence successional trajectories
of a forest by shaping forest structure (e.g., maximum tree
heights and biomass), tree population dynamics
(e.g., recruitment and mortality rates), and tree growth,
over decades and centuries (Bellingham et al., 1995;
Brokaw & Grear, 1991; Lin et al., 2020; McLaren
et al., 2019; Zimmerman et al., 1994). For example, tropi-
cal forest structure and canopy architecture are shaped
by cyclone disturbance frequency to varying degrees
(de Gouvenain & Silander Jr., 2003; Ibanez et al., 2019;
Peereman et al., 2022). Hurricane-induced compositional
changes can lead to varying successional trajectories of
forests, altering species composition, and relative abun-
dances of forest taxa in novel and ecologically important
ways, especially when combined with other disturbances
(Vandermeer et al., 2000). Timing, frequency, and sever-
ity of hurricanes are key modulators of hurricane effects
on vegetation compositional dynamics in space and time
(Brokaw et al., 2012). Given that hurricanes are increasing
in severity and frequency, it is imperative to understand
forest responses to multiple hurricanes over time, and how

the independent environmental drivers of hurricane dis-
turbance and recovery (e.g., canopy opening vs. debris
deposition, increased rain throughfall, and soil mois-
ture) modulate vegetation response (Turton, 2008).

Multiple disturbances span a gradient that can be non-
additive to compound each other or can counteract each
other in determining trajectories of ecosystem change over
time (Buma, 2015; Micheli et al., 2016; Tye et al., 2016).
Shifts in community composition postdisturbance may
develop slowly over time then return to baseline
prehurricane composition, or there may be key threshold
responses (i.e., “tipping points”) in response to disturbance-
induced environmental changes, which result in very long-
term changes that may not return to predisturbance condi-
tions in our lifetime (e.g., arrested succession; Brokaw
et al., 2012; Reyer et al., 2015; Zimmerman et al., 2021).
The drivers behind these different successional trajectories
and the subsequent consequences for ecosystem function
are not entirely clear. If the increased frequency of hurri-
cane disturbances is leading to changes in tropical forest
community composition via environmental alterations,
then changes may be most readily observed in the under-
story community of forests (i.e., tree saplings, ferns, and
other ground-dwelling plants), given their general faster
response times than large trees and that understory tropical
plant communities have different environmental controls
than the larger adult tree community (Baraloto &
Goldberg, 2004; Brokaw & Scheiner, 1989; Montgomery &
Chazdon, 2001; S. Murphy et al., 2016). The Canopy Trim-
ming Experiment (CTE) was designed (Shiels et al., 2010,
2015; see description in Methods) to examine tropical forest
community and ecosystem change in response to repeated
hurricane disturbances. Here, we evaluate how multiple
sequential canopy opening events via both experimental
trimming and natural hurricanes affect tropical forest
understory plant dynamics and species compositional
change. We ask two research questions:

1. How does the demography of the understory plant
community (tree saplings, ferns, and other understory
plants) respond to repeated hurricane disturbances?

2. To what degree do hurricane-induced environmental
changes in solar radiation and soil moisture drive
community compositional differences in the under-
story plant community?

METHODS

Study site

The CTE is located in the subtropical montane forest of
the Luquillo Experimental Forest (LEF) in northeastern
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Puerto Rico (18.3215�N, 65.8141�W) (Shiels et al., 2010;
Shiels & Gonz�alez, 2014). The area has an aseasonal
everwet climate, where typically no month receives <100
mm of rainfall (S. F. Murphy et al., 2017). The intrusive
volcaniclastic geology of the forest has led to the develop-
ment of highly weathered tropical ultisol and inceptisol
soils with low fertility (Mount & Lynn, 2004;
Scatena, 1989; Seiders, 1971). The CTE is located within
the mid-elevation (340–485m above sea level) tabonuco
forest type of the LEF, which is dominated by Dacryodes
excelsa and Prestoea acuminata var. montana, has a
single-tiered canopy that lacks canopy emergent trees
and reaches about 20 m (Brokaw & Grear, 1991).

Natural hurricanes affecting the LEF
and CTE

The LEF experiences frequent hurricane disturbances
with a historic return interval estimated at 60 years
(Booze et al., 2004; Scatena et al., 2012). Two strong and
damaging hurricanes (San Ciprian and San Felipe)
affected the LEF in the 1930s (Scatena & Larsen, 1991).
Several storms have occurred since the 1930s; however,
none severely damaged the LEF until Hurricane Hugo in
1989 (Zimmerman et al., 1994). Thus, the LEF was in a
relatively mature successional state in 1989 with tall trees
and high levels of tree biomass before Hurricane Hugo
severely damaged the forest (Brokaw & Grear, 1991).
Another strong (category 3) hurricane, Georges, affected
the LEF in 1998, and although being similar in strength
to Hurricane Hugo, the pathway of Hurricane Georges
across Puerto Rico resulted in less damage to the LEF
(Hogan et al., 2016). The CTE was established at the end
of 2002, and treatments began 2 years after plot establish-
ment (Shiels et al., 2010; Shiels & Gonz�alez, 2014; see
more details below).

Of the seven hurricanes that have occurred since the
establishment of the CTE (Knapp et al., 2010), Hurri-
canes Irene (22 August 2011), Irma (7 September 2017),
and Maria (20 September 2017) passed nearest to the LEF
and CTE, with minimum distances from the eye of the
hurricane to the CTE of 16.6, 37.4, and 74.7 km, respec-
tively. Hurricane Irene did not lead to noticeable forest
damage at the CTE. However, Hurricanes Irma and
Maria collectively caused significant damage to the entire
LEF including the CTE. Irma partially defoliated the for-
est canopy and led to some canopy branch breakage,
then—2 weeks later—Maria caused widespread canopy
and tree stem damage, with complete canopy loss at the
landscape level and unprecedented levels of tree mortal-
ity (Y. Feng, Negr�on Ju�arez, et al., 2018; Uriarte
et al., 2019). Hurricane Maria likely caused more severe

damage to the LEF than any storm since Hurricanes San
Ciprian and San Felipe in the 1930s (Scatena et al., 2012;
Scatena & Larsen, 1991; Uriarte et al., 2019). As Hurri-
canes Irma and Maria both occurred in September 2017,
and Maria caused much more damage, we consider them
to have created one combined impact on the forest.
Henceforth, we will refer to the combined impact of both
Hurricanes Irma and Maria as the response of the under-
story to Hurricane Maria.

The CTE: An experimental simulation of
hurricane effects

The CTE is an ongoing experiment that simulates the
impacts of hurricanes on the forest canopy by removing
(i.e., trimming) tree branches to mimic hurricane-
induced canopy loss (Richardson et al., 2010; Shiels
et al., 2010; Shiels et al., 2015). The experiment was
designed with three replicates (blocks A, B, and C), each
comprised of four plots (30� 30 m, which included a 5-m
edge buffer around a 20� 20 m data collection area). The
20� 20 m data collection area was divided into 16 sub-
plots (subplot 4.7� 4.7 m with 0.4-m-wide walking paths
between the subplots) (see figure 3 in Shiels &
Gonz�alez, 2014; Zimmerman, 2017). Before the imple-
mentation of experimental treatments, plots were
assessed, vegetation structure was recorded, and abiotic
environmental equipment was installed and monitored
to collect approximately 1 year of pretreatment data.
Then, from October 2004 to June 2005, four treatments
were applied, each to one plot of the three replicate
blocks, in a factorial block design: (1) Trim+Debris, the
hurricane simulation, where trees were trimmed to
remove all branches, and the trimmed material (debris)
was deposited on the forest floor within the experimental
plot area; (2) Trim+No debris, where trees were
trimmed and debris collected and added to the forest
floor of plot; (3) No trim+Debris where trees were not
trimmed but debris was added; and finally, (4) No trim+

No debris, an untreated control where trees were not
trimmed and no debris was added. Treatments were
implemented (in order: blocks B, C, and A, with each
block taking an average of 75 days to trim the canopy and
deposit the debris).

For trimmed plots, all trees ≥15 cm diameter at breast
height (dbh; measured at 1.3 m above the ground surface)
had branches <10 cm diameter trimmed off at the main
stem, while trees 10–15 cm dbh were cut off at 3-m height
and palms ≥3-m height had all leaves removed (see
Shiels & Gonz�alez, 2014, for further details). In 2004,
trimmed debris was weighed and uniformly distributed
upon the Debris addition plots (Shiels et al., 2010;

4 of 23 HOGAN ET AL.



Shiels & Gonz�alez, 2014). A suite of measurements
within the plots occurred at frequent intervals (see more
details below) until 2014 when trees in the plots were ret-
rimmed. After the retrim, debris manipulation was discon-
tinued. Thus, only the Trim+Debris (Hurricane
simulation) treatment was re-implemented, while the No
Trim+No Debris (Control) plots remained as before. For
our statistical analyses, we focused on these two
treatments—Trim+Debris (Hurricane simulation) and
No Trim+No Debris (Control)—to examine the under-
story plant community demographic and compositional
responses to repeated hurricane disturbances.

Vegetation census methods: Saplings

For each of the 12 CTE (20� 20 m) plots (3 replicate
blocks), tree censuses were carried out approximately
annually (Zimmerman, 2020b). Tree censuses of the CTE
commenced on 1 March 2003, 15 October 2004,
17 September 2009, 17 October 2008, 12 November 2009,
1 October 2014, 26 October 2015, 24 October 2016,
4 December 2017, and 1 November 2018. Plots were
censused systematically in the same order each year to
reduce differences in the length of inter census periods,
with each census completed within 6 months. Free-
standing woody vegetation census protocols follow the
Center for Tropical Forest Science (now Smithsonian
Forest-GEO) methodology as outlined by Condit (1998).
Saplings are classified as stems ≥1 cm but <10 cm in
dbh; these were identified to species, assessed for living/
dead status, assessed for damage, and tagged with a
unique number. New stems were included in a census
(as recruits) when they reached a size of ≥1 cm dbh. Heli-
conia caribaea, an abundant and iconic understory
monocot of the LEF, was censused in the CTE, recording
alive/dead status, and the number of culms for each alive
individual >50-cm tall, the minimum size at which
H. caribaea individuals are included in tree censuses. In
all analyses included here, we define saplings as free-
standing (woody and understory shrub) stems ≥1 cm but
<10 cm dbh plus Heliconia individuals >50-cm tall.

Vegetation census methods: Ferns

Terrestrial ferns are long-lived perennials that can domi-
nate the herbaceous layer of the LEF understory
(Sharpe & Mehltreter, 2010; Sharpe & Shiels, 2014).
Ferns represent understory herbaceous vegetation
responses in our analyses. Fern abundance was censused
within each subplot (16 subplots 4.7� 4.7 m) of every
CTE plot (20� 20m excluding the 5-m border buffer), as

described in Sharpe and Shiels (2014). This gave a total
effective fern census area of 353 m2/plot. All ferns rooted
in the soil that were ≥10 cm in height at the longest leaf
length were identified and counted. Ferns were counted
early in January at the end of the calendar years 2003
through 2009, except for 2004 when the first canopy trim-
ming treatment was applied. After the 2009 count, fern
censuses were discontinued but were resumed in 2014
with an October census just before the second trim that
began in November 2014 and continued through 2018
(Sharpe, 2021).

In addition to the count of ferns across the whole
plot, individual terrestrial ferns ≥10 cm (longest leaf
length) were tagged, identified, counted, and measured
at the longest leaf length in 5 designated seedling moni-
toring quadrats (1.0� 3.5 m), located within 5 of the
16 subplots of each plot (Zimmerman, 2020a). Monitor-
ing took place in October each year from 2003 to 2019,
except for 2004 when it occurred in June (for more
details, see Sharpe & Shiels, 2014; Shiels et al., 2010).
Plant mortality was noted, and new plants were tagged
and recorded as recruits when they reached 10 cm in
leaf length.

Environmental measurements: Soil
moisture and solar radiation

Data on environmental parameters including tempera-
ture, rainfall, canopy throughfall, canopy openness and
understory solar radiation, soil biogeochemistry, and
soil moisture have been extensively monitored in the
CTE since 2002 (Shiels et al., 2010; Shiels et al., 2015;
Shiels & Gonz�alez, 2014; Van Beusekom et al., 2020).
Environmental data were collected on the 20� 20 m
plot interiors, excluding the 5-m border zones to mini-
mize edge effects. Solar radiation and soil moisture are
among the most important factors that can elicit a
response from the understory plant community. Accord-
ingly, our analysis focused on the effects of soil volu-
metric water content (VWC) and incoming solar
radiation on the understory vegetation (Gonz�alez & Van
Beusekom, 2021).

From 2003 to 2006 at 3-month intervals, gravimetric
soil water content (GWC) was measured manually from
collected soil samples (Richardson et al., 2010). Then in
2015, soil volumetric moisture sensors were installed at
5 cm depth (Decagon Devices 5TM, METER Environ-
ment, Pullman, WA, USA), and Campbell Scientific
SC616 soil water content reflectometers were installed at
0–15 cm depth (Campbell Scientific, Logan, UT, USA) to
continuously monitor soil VWC. In 2015, soil bulk den-
sity and GWC were repeatedly measured near installed
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sensors, for comparison of concurrent GWC and VWC
measurements for 1 year. To create a single data series,
GWC measurements were converted to VWC using soil
bulk density and smoothed VWC data from the soil
reflectometers. Soil VWC data were checked against sat-
ellite data from the Advanced Microwave Scanning Radi-
ometer 2 (AMSR2), confirming that increases and
decreases in soil VWC tracked satellite observations over
time (Van Beusekom et al., 2020).

For incoming solar radiation, hemispherical canopy
photographs from within the CTE plots (before 2015)
were combined with measurements from solar
pyranometers (L1200X, Campbell Scientific, Logan, UT,
USA). Beginning in December 2003 (i.e., 1 year before
treatment implementation), hemispherical photographs
were taken at low light (i.e., dawn) using a fisheye lens at
1-m height above the center of five random subplots and
the center and corners of the 20� 20 measurement area
of each CTE plot (n = 10 per plot per sampling period;
Shiels et al., 2010; Van Beusekom et al., 2020). Additional
photographs were taken at roughly 6-month intervals
(i.e., 2–3 times per year) between 2005 and 2012. The
hemispherical canopy photographs were converted from
color to black and white images using threshold iterative
separation of background and foreground with the Ridler
and Calvard method (Bachelot, 2016). Converted images
were analyzed using the Hemiphot algorithm using R
(ter Steege, 1997, 2018), which estimates canopy open-
ness and leaf area index and calculates photosynthetically
active radiation (PAR) for one or several days using the
sun’s position and track over the canopy. A complete
time series of PAR was calculated by linearly interpolat-
ing PAR for each day of the year as a fraction of the pre-
vious and next photograph’s PAR on that day, which
roughly accounts for canopy cover recovery from trim-
ming and seasonal dynamics (Van Beusekom
et al., 2020). Photosynthetically active radiation was
translated to solar radiation by multiplying by a factor of
2 (Escobedo et al., 2009) and calibrating values to solar
radiation measurements from above the forest canopy. A
complete time series of solar radiation data was con-
structed by validating and interpolating values derived
from canopy photographs with measurements from the
pyranometers (post-2015). For further details, see Van
Beusekom et al. (2020).

Data analyses

All data analyses were done in R 4.0.3 (R Core
Team, 2020). For our first research question, which con-
cerns how repeated simulated and natural hurricanes
have affected understory plant demographic rates, we

calculated the demographic rates of ferns and saplings
for each plot in the CTE using the following equations:

Mortality rate¼ ln Ntð Þ� ln Nt�Ndeadð Þ½ �
t

and

Recruitment rate¼ ln NtþN recruitð Þ� ln Ntð Þ½ �
t

,

where Nt is the number of plants or stems alive at a given
second of two censuses, Ndead is the number of dead
plants or stems for that census, N recruits is the number of
newly recruited plants or stems for that census, and t is
the census interval in months (Condit et al., 1995). We
chose a monthly census interval because of the variation
in calendar dates for tree censuses among years. Fern
demographic rates were calculated using a total of five
plant census subplots, within each of the CTE treatment
plots. Sapling demographic rates were calculated using
tree census surveys of the entire area of each 20� 20 m
CTE plot. Mortality and recruitment rates are difficult to
measure, variable, and not distributed normally; there-
fore, the assumptions of standard statistical tests
(e.g., ANOVA) are not typically met (Condit et al., 1995;
Sheil & May, 1996). The Scheirer–Ray–Hare test, which
is a two-factor nonparametric statistical test that can test
for differences among factors and their interactions when
designs are balanced (Sokal & Rohlf, 1995), was used to
statistically test for demographic rate differences among
treatments over time and their interaction. The test was
run separately for mortality and recruitment rates for
both saplings and ferns. This is just like doing a multiple
factor Kruskal–Wallis test, which we explored and gave
congruent results.

Fern and sapling densities were calculated at the hect-
are scale for all plots and then for each species by treat-
ment. We searched for common species (>100 individuals
in the CTE) whose demographic responses to the treat-
ments (i.e., stem density changes) typified the demogra-
phy for specific plant life-history strategies. Based on
those selection criteria, three fern species (Thelypteris del-
toidea, Cyathea borinquena, and Cyathea arborea), six
woody species (Cecropia schreberiana, P. acuminata var.
montana, Psychotria berteroana, D. excelsa, Casearia
arborea, and Tetragastris balsamifera), and the clonal
understory monocot H. caribaea were selected as species
which exemplified responses. Their densities were plotted
by treatment over time.

For our second research question, which examined
changes in species composition over time for the CTE
hurricane simulation treatments and natural hurricanes
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versus control plots, we used principal coordinate analy-
sis (PCoA), also referred to as metric multidimensional
scaling (MDS) ordination (Gower, 1966). Community
(i.e., plot� species) matrices for hurricane simulation
and control plots were constructed by combining fern
and sapling communities for censuses that took place in
the same calendar year. Combining fern and sapling cen-
suses led to understory plant community counts for 2003,
2004, 2007, 2008, 2009, 2011, 2012, 2013, 2014, 2015,
2016, 2017, and 2018. Species abundances per plot were
relativized, and the Bray–Curtis distance (Bray &
Curtis, 1957) was used to compute compositional dissimi-
larity among plots over time. The PCoA was done using
the “capscale” in the vegan R package (Oksanen
et al., 2020) before plotting the plot scores in the MDS
ordination space. We also plotted the species scores, not-
ing where tree and fern taxa sorted out concerning the
first two ordination axes.

Multidimensional scaling ordination site scores were
regressed against environmental predictors (soil moisture
and solar irradiance) using linear mixed-effects models
(LMMs). For each of the first two MDS axes, the best-
fitting LMMs that included fixed predictors of the envi-
ronmental variable (either soil VWC or solar radiation),
year, treatment (hurricane simulation or control CTE
plot), and interactions between year and the environmen-
tal variable, and between year and treatment were
selected. Random intercept terms for year and block were
considered. The “step” function from lmerTest package
(Kuznetsova et al., 2017) was used to find the best-fitting
models based on the Akaike information criterion, by
doing backward selection of random effects, then fixed
effects. Models themselves were fit using the lme4 pack-
age (Bates et al., 2014). We tried to fit models that
included both soil VWC and solar irradiance and their
interaction in the same LMM; however, we were limited
by the degrees of freedom in the dataset (n = 60 for the
solar irradiance models and n = 42 for the soil moisture
models), and could not fit these models satisfactorily
(i.e., the models resulted in rank-deficient model matri-
ces). As a result, we used separate LMMs for solar radia-
tion and soil moisture.

The best-fitting LMMs for each MDS axis using the
environmental predictors all included fixed effects for
treatment, the environmental predictor, and an interac-
tion term between treatment and the environmental pre-
dictor. The fixed effect for year dropped out during the
model selection procedure because it did not improve
model fit. A random intercept term for block was
included in each model. The random intercept for repli-
cate block allows for residual variation in MDS site scores
among experimental units in the LMM; however, it
removes such variation when estimating the effects of

treatment, the environmental predictors, and their inter-
action. We were particularly interested in the interaction
between treatment (i.e., the effect of canopy trimming)
and the environmental predictors (i.e., solar radiation
and soil moisture) on understory plant community com-
positional change in the CTE.

Lastly, we conducted permutational multivariate
analysis of variance (PERMANOVA) to evaluate the
effects of treatment, time, and environmental variables
(i.e., solar radiation and soil moisture) including interac-
tions. This was done to verify the results from the LMMs
of MDS axes using the entire community composition
dataset. The PERMANOVAs were done using the
“adonis” function in the vegan R package (Oksanen
et al., 2020). PERMANOVAs were done separately for soil
moisture and solar radiation to maintain congruence
with the LMMs. Permutations were constrained within
experimental blocks (A, B, and C), because of high
β-diversity among experimental replicates. A total of 9999
permutations were used.

RESULTS

Treatment effects on the environment
over time

Trimming of the canopy in 2004 and 2014 in the experi-
mental plots increased solar radiation and soil moisture
in the forest understory (Appendix S1: Figures S1, S2
and Table S1). In 2003 before the first canopy trim, solar
radiation levels were generally low, averaging 25.1 and
21.4 W/m2 in control and hurricane simulation plots,
respectively. At this time, the mean difference in solar
radiation was 3.7 W/m2 greater in hurricane simulation
than in control plots. Similarly, soil moisture averaged
0.45 and 0.51 cm3/cm3 in the control and hurricane
plots, respectively, being on average 0.14 cm3/cm3

greater in hurricane simulation than in control plots
(Appendix S1: Figure S1). Then, the mean difference
among treatments maximized in 2005 after the first
trim, increasing to be 7.8 W/m2 and 0.25 cm3/cm3

greater in simulated hurricane plots. In 2005, incoming
solar radiation and soil moisture measured 36.9 W/m2

and 0.12 cm3/cm3 for hurricane plots, compared to
29.1 W/m2 and 0.08 cm3/cm3 for the control plots
(Appendix S1: Figure S1).

Differences in solar radiation and soil moisture
among treatments attenuated over time between trim-
ming implementations, but then increased again in 2015
following the second trim, where the average differences
in solar radiation and soil moisture were 22.9 W/m2 and
0.07 cm3/cm3 greater in simulated hurricane plots. At this
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time, average incoming solar radiation levels were
51.0 W/m2 in hurricane simulation plots and 28.1 W/m2

in control plots, and average soil moisture measured 0.41
cm3/cm3 in hurricane simulation plots and 0.35 cm3/cm3

in control plots (Appendix S1: Figures S1 and S2). Maxi-
mum solar radiation levels in the hurricane simulation
plots reached about 200W/m2 following canopy trim-
ming (Appendix S1: Figure S2). In 2017, Hurricane Maria
induced increases in solar radiation and soil moisture in
both treatments, wherein differences diminished among
treatments (Appendix S1: Figures S1 and S2). In 2018,
1 year post-Maria, average incoming solar radiation levels
were 72.0 W/m2 in the hurricane simulation plots and
63.9 W/m2 in control plots, and average soil moisture
measured 0.44 cm3/cm3 in both hurricane simulation and
control plots (Appendix S1: Figure S2). In the years fol-
lowing Hurricane Maria, minimal differences have
emerged among treatments and there has been a slightly
decreasing trend in both solar radiation and soil moisture
in all CTE plots, because of forest canopy recovery and
recruitment dynamics.

Sapling and fern demographic responses

We compare the dynamics of understory saplings and
ferns in simulated hurricane plots, which were trimmed
in 2004 and 2014, to control plots having no canopy trim.
All plots were affected by Hurricane Maria in 2017. In the
prolonged absence of simulated or natural hurricane dis-
turbances (i.e., not immediately following canopy trim-
ming or Hurricane Maria), understory plant mortality and
recruitment rates in both treatments of the CTE were gen-
erally low, fluctuating near zero (Figure 1). Treatment
implementation led to a significant difference in sapling
mortality and recruitment rates (Table 1). Sapling mortal-
ity and recruitment rates also differed significantly over
time (Table 1). Baseline mortality of saplings from 2003 to
2016 (i.e., not in intervals following simulated or natural
hurricanes) in the control plots was 0.0060 stems/month,
whereas it was 0.0115 stems/month in the hurricane sim-
ulation plots (Figure 1). Thus, baseline mortality for sap-
lings was approximately twice as high in hurricane
simulation plots relative to control plots.

F I GURE 1 Demographic (mortality and recruitment) rates in stems per plot per month for saplings (triangles) and individuals per plot

per month for ferns (circles) for the hurricane simulation (Trim+Debris) and control (No Trim+No Debris) Canopy Trimming Experiment

treatments over time (2003–2019). The y-axis is square root-transformed to aid in the visibility of small values. Points are means, and

whiskers show SE (across experimental blocks, n = 3). Mortality rates are shown as negative values (red), while recruitment rates are shown

as positive (blue). Vertical dashed lines show when simulated and natural hurricanes occurred (first canopy trim: March 2005, second

canopy trim: November 2014, and Hurricane Maria: September 2017).
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Mortality rates of ferns between treatments were
nearly equal, with mortality rates averaging 0.0051 and
0.0052 plants/month from 2003 to 2016 in control and
hurricane simulation plots, respectively. Fern mortality
rates were not statistically different among treatments or
over time; however, fern recruitment differences between
treatments were marginally significant and fern recruit-
ment differed significantly over time (Table 1). Following
hurricane simulations, mortality rates of both saplings
and ferns tended to be higher in the hurricane treatment
than in the control treatment (Figure 1). Baseline recruit-
ment rates for saplings averaged 0.0308 stems/month in
the control plots and 0.0195 stems/month in the hurri-
cane simulation plots. For ferns, baseline recruitment
was 0.0019 plants/month in the control plots and
0.044 plants/month in the hurricane simulation plots
(Figure 1).

For both saplings and ferns, demographic rates
increased with the experimental canopy trimming and
Hurricane Maria (Figure 1). For saplings, recruitment
rates approximately doubled in the hurricane simulation
plots compared to control plots for census intervals fol-
lowing the canopy trimming treatment (2007 and 2015;
Figure 1). For understory ferns, recruitment in the con-
trol plots was nonexistent for census intervals following
experimental manipulations (2006 and 2015) but mea-
sured 0.0037 and 0.0071 plants/month in the hurricane
simulation plots for the first and second canopy trimming
treatments, respectively. However, understory recruit-
ment related to Hurricane Maria was generally greater in
the control plots than it was in the hurricane simulation

plots (Figure 1). For example, sapling recruitment rates
for the two census intervals following Hurricane Maria
averaged 0.0308 plants/month in the control plots com-
pared to 0.0195 plants/month in the hurricane simulation
plots. For ferns, the difference in demographic rates after
Hurricane Maria was more evident, with recruitment
averaging 0.0465 plants/month in the control plots,
which was approximately 15 times higher than the
recruitment rate of 0.0034 plants/month in the hurricane
simulation plots (Figure 1).

Key species driving demographic responses
and compositional turnover in the CTE

For saplings, the overall recruitment response to can-
opy trimming treatments was pronounced. Stem densi-
ties increased fourfold in the trimmed hurricane
simulation plots (Figure 2a). The increase in stem den-
sities in the hurricane simulation plots (Figure 2a) is
primarily driven by the recruitment of pioneer species
that responded strongly to the increased solar radiation
because of canopy opening after trimming, such as the
understory shrub, P. berteroana (Figure 2d), and the
pioneer tree species C. schreberiana (Figure 2b). Both
species recruited heavily; then, stem densities thinned
over time as the canopy of the trimmed plots closed,
and some of the pioneer saplings grew to larger,
canopy-dwelling trees. In the hurricane simulation
plots, the recruitment pulse of P. berteroana following
the first canopy trim persisted for about four times as

TAB L E 1 Scheirer–Ray–Hare test statistics for differences in recruitment and mortality rate for saplings and ferns in the Canopy

Trimming Experiment (CTE) by treatment and time (and their interaction).

Demographic rate Plant group n MStotal Factor df SS H p

Mortality Saplings 84 595 Treatment 1 7058 11.84 0.0006

Time 12 19,885 33.44 0.0008

Treatment:time 12 5006 8.42 0.7516

Ferns 96 776 Treatment 1 938 1.83 0.1761

Time 15 6952 13.57 0.5582

Treatment:time 15 8685 16.95 0.3216

Recruitment Saplings 84 595 Treatment 1 3319 5.87 0.0154

Time 12 17,962 34.97 0.0005

Treatment:time 12 5910 10.46 0.5759

Ferns 96 776 Treatment 1 1358 1.83 0.0675a

Time 15 10,185 25.08 0.0488

Treatment:time 15 8669 21.35 0.1260

Note: MStotal is the total mean squares, df stands for degrees of freedom, and SS is the sum of squares. The H statistic is a Χ2-distributed statistic, calculated as
the ratio of MStotal to SS. The p values in boldface are statistically significant at α = 0.05.
aDenotes marginal significance.
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long as the recruitment pulse of C. schreberiana. These
species exemplify the quick recruitment response to
hurricane disturbance, which is followed by

subsequent mortality that brings species densities back
down to levels similar to those found in the control
plots within the first 17 years of the CTE.

F I GURE 2 Sapling (dbh ≥1 cm, <10 cm) stem densities over time in hurricane simulation plots (Trim+Debris, shown in gray) and

control plots (No Trim+No Debris, shown in orange) plots of the Canopy Trimming Experiment. Points are mean densities across

experimental replicates (n = 3, blocks A, B, and C), and bars show SE. Vertical dashed lines show when simulated hurricane canopy trims

and natural hurricanes occurred (experimental trim 1: March 2005, experimental trim 2: November 2014, and Hurricane Maria: September

2017). The species shown here represent the different types of characteristic responses, where the two heliophilic, pioneer species—
(b) C. schreberiana, and (d) P. berteroana—drive the trend shown in panel (a) for all tree species. (c) P. acuminata var. montana and

(e) D. excelsa are the two dominant species in the forest and show little change. (f) Ca. arborea, and the tall canopy tree (g) T. balsamifera,

are two abundant mid-successional tree species that show a slower but sustained increase in the hurricane simulation plots. Lastly,

(h) H. caribaea (not a tree, censused as an herbaceous understory monocot), shows a cyclical change in densities.
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Stem densities for both Ca. arborea (Figure 2f) and
T. balsamifera (Figure 2g) were similar in all plots before
canopy trimming, and both showed an initial pulse in
recruitment in the hurricane simulation plots after trim-
ming by increasing four times for Ca. arborea and dou-
bling for T. balsamifera, but these saplings did not suffer
such high mortality as the trimmed canopy gradually
closed, and their densities have remained elevated since
then. In contrast to the pioneer and intermediate light-
demanding tree species mentioned above, many species
show almost no change in stem densities in response to
the effects of canopy trimming to simulated hurricane
disturbance. Two of the most dominant species that are
characteristic of this LEF forest type, the sierra palm
(P. acuminata var. montana; Figure 2c) and the tabonuco
(D. excelsa; Figure 2e), did not show any changes in stem
densities in response to either simulated or natural hurri-
canes. Additionally, H. caribaea (Figure 2h), a heliophilic
dominant understory monocot (Musaceae family) mea-
sured as part of the tree census, recruited into hurricane
simulation plots following canopy trimming, where it
had been absent and shows several clear increases over
time in response to hurricane effects. In control plots, it
increased in abundance following Hurricane Maria
(Figure 2h).

Of the 20 fern species observed during the study,
10 were resident at the beginning, while only 6 of these
were present at the end (Appendix S1: Table S2). The
most common resident fern species were T. deltoidea and
the trunkless tree fern Cy. borinquena. Densities of
T. deltoidea steadily declined in the control plots through-
out the study (Figure 3b). By contrast, T. deltoidea density
initially declined in hurricane simulations plots but
increased after the first trim in 2004, declining again by
the second trim to which it showed little response; how-
ever, the magnitude of increase in the trimmed plots after
hurricane Maria in 2017 was of about the same as to the
first trim (Figure 3b). There were very few individuals of
Cy. borinquena in the control plots, and this species
showed little response to the two trimming treatments or
Hurricane Maria (Figure 3c). All other fern species
occurred in lower densities throughout the study
(Appendix S1: Table S2) except the pioneer fern species
Cy. arborea, a tall tree which recruited briefly into the
hurricane plots following the first and second canopy
trims, and also appeared in very large numbers in the
control plots 1 year after Hurricane Maria (Figure 3d).

The species composition of the fern community also
changed over time (Appendix S1: Table S2). Before CTE
treatments (i.e., 2003–2004), there were more resident
fern species (seven) present in the hurricane simulation
plots than in the control plots (five), but by 2018 (after
Hurricane Maria), only the core three resident species

remained in the hurricane plots. Both the control and the
hurricane plots maintained core populations of under-
story resident ferns (T. deltoidea, Cy. borinquena, and

F I GURE 3 Fern densities in the Canopy Trimming Experiment

(as the numbers of individual plants per hectare) over time in

simulated hurricane plots (Trim+Debris, shown in orange) and

control plots (No Trim+No Debris, shown in gray) plots. (a) All fern

species, (b) T. deltoidea, (c) Cy. borinquena, and (d) Cy. arborea.

Points are average densities across replicate blocks (n = 3, blocks A,

B, and C), and whiskers show the SE. Vertical dashed lines show

when simulated and natural hurricanes occurred (trim 1: March

2005, trim 2: November 2014, Hurricane Maria: September 2017).
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Nephrolepis rivularis) from 2003 through 2018. These fern
species, plus Adiantum obliquum, were still present in
the control plots in 2018 after the passage of Hurricane

Maria. While a small number of four low-growing pio-
neer species had appeared by the end of the study, it was
the tree fern species Cy. arborea that dominated the fern

F I GURE 4 Metric multidimensional scaling (MDS) ordination for the understory community of the Canopy Trimming Experiment,

including tree saplings, ferns, and H. caribaea over time. (a) Ordinations by treatment (control—No Trim+No Debris, and hurricane

simulations—Trim+Debris). Note the separation among block and the general trend for plots to generally move up in the ordination space

over time in the absence of experimental of natural hurricane disturbance, but down in the ordination space following canopy trimming and

Hurricane Maria. Block replicates are labeled (blocks A, B, and C). Points are colored by and connected with arrows (and numerals) between

consecutive vegetation censuses. (b) Species scores in the ordination space. Axes are square-root transformed to help visually distinguish

small values. Species are colored based on their life form (see Appendix S1: Table S2 for a complete table of taxonomic information

corresponding to six-letter species codes). Notable species codes clockwise around the periphery of the two-dimensional species space are as

follows: NEPBRO—Nephrolepis brownii, CASARB—Casearia arborea, GUTCAR—Guatteria caribaea, SLOBER—Sloanea berteroana,

SCHMOR—Schefflera morototoni, NEPRIV—Nephrolepis rivularis, CYAARB—Cyathea arborea, PSYBER—Psychotria berteroana,

CECSCH—Cecropia schreberiana, DACEXC—Dacryodes excelsa, DANGEN—Danaea geniculata, THEDEL—Thelypteris deltoidea,

PREMON—Presotea acuminata var. montana, ADIOBL—Adiantum obliquum, MYRLEP—Myrcia amazonica, and MANBID—Manilkara

bidentata. See Appendix S1: Figures S3 and S4 for species loadings along each MDS axis plotted separately.
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community in the control plots after Hurricane Maria.
Some of Cy. arborea that recruited into the hurricane
plots after trim 1 had disappeared by 2009 but reappeared
in very small numbers after the second trim. Thus, by
2018, the control plots had more species (nine) because
of the influx of pioneer species than the hurricane plots
(six), which had both lost resident species and gained
only two other species.

Changes in understory plant community
composition in CTE treatments over time

Community changes in species composition visualized
using MDS ordination showed that composition varied
among the three blocks (i.e., spatially) and over time (i.e.,
in plots from 2003 to 2018) in response to hurricane dis-
turbance (Figure 4a). For the hurricane simulation treat-
ment, MDS site scores shifted most dramatically in 2004
and 2015 in response to the canopy trimming. The move-
ment of the hurricane simulation plots was uncoordinated
in the MDS ordination space over time. Following the
2004 experimental trimming, blocks A and C shifted posi-
tive on MDS axis 2 (i.e., upwards), but block B moved neg-
ative; additionally, blocks A and C moved left on MDS
axis 1, while block B shifted right (Figure 4a). After the
first experimental trim, hurricane treatment plots were
more or less consistent in moving down and to the left in
the MDS ordination space. For the control plots, all exper-
imental blocks shifted positively on MDS axis 2 over time.
Some variation in movement among blocks existed about
MDS axis 1 of the ordination space, as block B moved
mainly in a positive direction (i.e., right), block A moved
negative (i.e., left), and block C remained stationary. For
the control plots, MDS site scores shifted most noticeably
in response to Hurricane Maria in September 2017
(Figure 4a), showing drastic shifts down on MDS2 and to
the right for blocks A and B. Movement of hurricane sim-
ulation plots in the ordination space due to Hurricane
Maria in 2017 was much less, being similar in magnitude
to compositional change due to previous experimental
implementations. Furthermore, there were considerable
differences in community composition among blocks A,
B, and C, as the plots from each block separate in the
MDS ordination space.

The species space from the MDS ordination repre-
sents taxa with demographic responses that differentiate
the two main axes of variation in understory composition
among plots in the CTE (i.e., MDS1 and MDS2;
Figure 4b). Dynamics of four tree species (e.g., Ca.
arborea, C. schreberiana, Sloanea berteroana, and Schef-
flera morototoni), two small trees (Cordia borinquensis,
Hirtella rugosa), one shrub (P. berteroana), and four ferns

(Cy. arborea, Cy. borinquena, Nephrolepis brownii, and
N. rivularis) exert influence on the positive side of MDS1,
with loadings >0.1 (Appendix S1: Figure S3). On the neg-
ative side of MDS1, one tree (D. excelsa), P. acuminata
var. montana (the dominant palm), and three fern spe-
cies (A. obliquum, Danaea geniculata, and T. deltoidea)
have demographic influence, with loadings <�0.1
(Figure 4b; Appendix S1: Figure S3). For MDS2, abun-
dances of a single tree (Manilkara bidentata) influence
the positive end of the axis, while abundance fluctuations
of five tree species (C. schreberiana, D. excelsa, Guatteria
caribaea, S. morototoni, and S. berteroana), one shrub
(P. berteroana), and five fern species (Cy. arborea, Cy.
borinquena, D. geniculata, N. rivularis, and T. deltoidea)
affect the negative side of the axis (Appendix S1:
Figure S4).

Responses of pioneer species, like C. schreberiana and
S. morototoni, and the understory shrub (P. berteroana),
which are highly responsive to hurricane disturbance,
influence the positive side of axis 1 and the negative side
of axis 2 in the MDS species space (Appendix S1:
Figures S3 and S4). Seven (three ferns, three trees, and a
shrub) of the 11 species that influence the positive side of
MDS1 also influence the negative side of MDS2
(C. schreberiana, Cy. arborea, Cy. borinquena, N. rivularis,
P. berteroana, S. berteroana, and S. morototoni). Three
(one tree and two ferns) of 11 species that influence the
negative side of MDS2 also influence the negative side of
MDS1 (D. excelsa, D. geniculata, and T. deltoidea). Species
exerting more influence in the MDS species space tended
to be those with higher densities in the CTE plots, those
that show a clear preference for the treatments, or those
that respond strongly over time (Appendix S1: Table S2).

Thus, the MDS species space shows a forest under-
story species community composition trade-off, primarily
capturing sapling and fern pioneer species responses, but
also certain responses of late- and secondary-successional
species (e.g., M. bidentata, Ca. arborea, G. caribaea,
N. brownii, and A. obliquum). The secondary-successional
and late-successional species tend to be located on the
top and right of the species MDS ordination space
(Figure 4b), whereas the pioneer taxa are found lower
and to the left (Appendix S1: Figures S3 and S4).

Solar radiation and soil moisture effects
and their interaction with the CTE
treatments

For the LMMs that included effects for solar radiation,
the fixed effects for treatment were the strongest signifi-
cant effects in the LMMs (see Appendix S1: Figure S5
and Table S3). The hurricane simulations resulted in a

ECOSPHERE 13 of 23



positive shift for MDS site scores on both axis 1 and axis
2 (Figure 5). The effect of variation in solar radiation
among plots alone, after accounting for the main treat-
ment effect, was minimal (variable not included for
MDS1 and β = �0.01, p = 0.19 for MDS2). The interac-
tion between solar radiation and the hurricane simula-
tion treatment was statistically significant in affecting
MDS2 axis scores (Figure 5; Appendix S1: Table S3).
Thus, the majority of variation in understory composition
and its variability over time can be attributed to the simu-
lated hurricane treatments of the CTE (i.e., the categori-
cal fixed effect of treatment, β = 0.37, p< 0.01, for MDS1
and β = 104.91, p< 0.05, for MDS2). The interaction of
solar radiation with experimental treatment was signifi-
cant for compositional variation along MDS2 (β = 0.02,
p = 0.02), but not for compositional variation along

MDS1, where the interaction was not included in the
best-fitting LMM (Figure 5).

Similar to the LMMs for soil radiation, the fixed
effects for experimental treatment were among the stron-
gest significant effects in the LMMs for soil moisture
(MDS1: β = �2.26, p< 0.05; MDS2: β = �2.92, p< 0.01;
see Appendix S1: Figure S6 and Table S4). The effects of
soil moisture alone on compositional variation along
MDS axes were marginally significant (MDS1: β = �2.08,
p = 0.18; MDS2: β = �2.04, p = 0.16). Yet, the interac-
tion between soil moisture and treatment was significant
for MDS variation along both axes (MDS1: β = 6.14,
p = 0.02; MDS2: β = 5.60, p = 0.03), wherein understory
composition shifted toward the negative side of both
MDS axes in control plots with increasing soil moisture
but had the opposite trend in experimentally trimmed

F I GURE 5 Interaction plots for linear mixed-effects models. Points show plot mean solar radiation or soil volumetric water content

(VWC) values and multidimensional scaling (MDS) sites scores for the corresponding census interval (n = 42 for soil moisture and n = 60

for solar radiation). Models were fit to explain MDS loadings for Canopy Trimming Experiment (CTE) hurricane simulation and control

plots over time using annual mean solar radiation (upper panels) or soil VWC (lower panels)� Treatment as the explanatory variables with

a random intercept for experimental block. Probabilities in the lower right of the figure panels show the statistical significance of the

interaction between treatment and environment (either mean soil VWC or solar radiation) on the MDS site scores. See Appendix S1:

Tables S6 and S7 for complete model summary tables and effect plots.
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plots (Figure 5). Thus, increases in soil moisture because
of hurricane-driven canopy opening led to divergent
trends in the species composition of the regenerating
understory. Regarding compositional variation among
replicated blocks, along MDS1 block B was different from
blocks A and C, and along MDS2 block A was distinct
from blocks B and C (Appendix S1: Figure S7).

The PERMANOVA results largely confirmed the
results from the LMMs (see Appendix S1: Table S5 for
solar radiation and Appendix S1: Table S6 for soil mois-
ture). Treatment was the most significant factor in driv-
ing compositional dissimilarity (F1,59 = 8.13, p = 0.001
for solar radiation, and F1,41 = 5.39, p = 0.001 for soil
moisture). Additional effects of solar radiation alone,
time, or interactions between treatment and time and
solar radiation and time were all marginally significant
(Appendix S1: Table S5). Soil moisture alone had a non-
significant effect; however, it interacted significantly with
treatment to affect compositional dissimilarity
(F1,41 = 3.18, p = 0.003). Effects for time and its interac-
tion with treatment were also significant factors affecting
community composition in the soil moisture PER-
MANOVA (F6,41 = 1.58, p = 0.003 and F6,41 = 1.04,
p = 0.006, respectively; Appendix S1: Table S6).

DISCUSSION

The simulated hurricane and natural hurricanes affecting
the CTE plots have created a novel testing ground for the
compounding effects of multiple hurricane disturbances
on tropical forest plant communities. Using a 17-year
dataset (2003–2019) on understory forest dynamics of
saplings and ferns, our first research question addressed
how demographic rates of understory saplings and ferns
vary in response to hurricane disturbance. We hypothe-
sized that after repeated disturbance from experimental
canopy trimmings followed by a naturally occurring hur-
ricane, the understory would show less variation in mor-
tality and recruitment rates and less change in species
composition than in the untrimmed control plots. This
hypothesis rests on the assumption that the species com-
position of trimmed plots would maintain a higher pro-
portion of pioneer species than in control plots, and the
ability of pioneer species to recruit to natural hurricane
disturbance would be lower in the previously trimmed
plots than in the controls (Hogan et al., 2016; Uriarte
et al., 2009). We found some support for this hypothesis,
in that mortality and recruitment rates differed among
treatments and over time for saplings, and recruitment
rates of ferns differed over time (Table 1). Demographic
rates were more evenly spread over the 17 years of moni-
toring for the trimmed, hurricane simulation plots than

for control plots. Additionally, trimmed plots had a
muted demographic (i.e., mortality or recruitment)
response to the natural hurricanes in 2017 compared to
the untrimmed control plots (Figures 1–3).

Our second research question asked to what degree dif-
ferences in solar radiation and soil moisture that result from
canopy loss drive compositional change in the forest under-
story. We hypothesized that solar radiation would be the
primary driver of understory plant community composi-
tional change, as it may change more dramatically in the
understory after a hurricane than soil moisture, and because
soil moisture is not believed to be limiting in this wet tropi-
cal forest. Contrary to the hypothesis, we found that
although solar radiation had significant effects, soil moisture
interacted with hurricane disturbance to also affect the com-
position of recruits. Both soil moisture and solar radiation
to the understory increased in the hurricane simulation
treatments relative to control plots (Appendix S1:
Figures S1, S2 and Table S1). Although measured solar radi-
ation levels alone had no additional effect on altering com-
munity composition after the direct effects of canopy
opening (i.e., treatment) were accounted for, the changes in
solar radiation following canopy opening significantly
shifted species composition of the regenerating understory
toward pioneer saplings (e.g., P. berteroana, C. schreberiana,
and S. morototoni) and ferns (e.g., O. aculeata and Cy.
arborea). Soil moisture, however, interacted with the hurri-
cane simulation treatment to move the understory commu-
nity composition toward a more pioneer species
composition (Figure 5), pointing to a secondary control on
understory species recruitment, which may be independent
of solar radiation responses in this historically and evolu-
tionary-adapted hurricane-disturbed tropical wet forest.

Demographic responses of the understory
to repeated hurricane disturbances

For saplings, the recruitment of understory shrub species
(e.g., P. berteroana) and larger pioneer tree species
(e.g., C. schreberiana) is an iconic successional signature
of hurricane disturbances in Caribbean tropical forests
(Bellingham et al., 1995; Brokaw et al., 2012; Hogan
et al., 2016; Zimmerman et al., 2021). The recruitment
response of trees in the CTE understory to canopy open-
ings from simulated and natural hurricanes damages
more than tripled stem densities (Figure 2) (Chevalier
et al., 2022; Zimmerman et al., 2014). This rapid coloniza-
tion by pioneer species results in a community shift
toward species with low wood densities and faster life-
history strategies in the short term (Curran et al., 2008;
Hogan et al., 2018). These pioneer species grow fast and
rapidly replace and infill the forest canopy. The closure
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of the forest canopy recreates the shaded environment
that late-successional species (e.g., M. bidentata and
D. excelsa) with higher wood density require to recruit
and grow (Curran et al., 2008), which occurred within 4
years following the first canopy trim (Shiels et al., 2010).
Mid-successional species such as Ca. arborea show a curi-
ous response to the effects of simulated hurricane distur-
bance (Figure 2) in stem densities, potentially benefiting
long-term under cyclic hurricane recurrence. Casearia
arborea and T. balsamifera recruited to higher stem den-
sities after the first canopy trim, and these high densities
remained elevated for the duration of the CTE monitor-
ing (Figure 2).

Simulations of the forest dynamics in the LEF using
the SORTIE model parameterized using demographic
data from the nearby Luquillo Forest Dynamics Plot
(Uriarte et al., 2009) showed that these mid-successional
species are preferentially selected for under cyclic,
repeated hurricane disturbance versus infrequent, non-
cyclic disturbance. Thus, these findings from the CTE
support previous simulations of forest demographics, at
least over the short term (i.e., one to two decades, given
several canopy opening events). Such preferential shifts
in the recruitment of the sapling community can change
the successional trajectories of the tropical tree commu-
nity (Chazdon, 2008; Hogan et al., 2016; Lai et al., 2021),
which in turn may have lasting effects on the forest struc-
ture and carbon dynamics of the forest (Chevalier
et al., 2022; X. Feng, Uriarte, et al., 2018; Uriarte
et al., 2009), especially if hurricane disturbance is coupled
with other environmental stressors (e.g., drought). The
ecosystem demography model predicts a decline in the
carbon storage capacity of LEF over the next several
decades, which is driven by an increase in early and mid-
successional tree species at the expense of late-
successional tree species (X. Feng, Uriarte, et al., 2018).
These declines are predicted to be accelerated by a 30%
increase in drought frequency and continued warming
(of 1.2�C from 2016 mean temperatures) (X. Feng,
Uriarte, et al., 2018). Downscaled climate models do pre-
dict a decrease in total annual rainfall, which is driven
primarily by an increase in the frequency of dry days
(those with <5mm of rainfall) during the onset of the
wet season (May–June) (Ramseyer et al., 2019). There-
fore, drought will likely interact with hurricane distur-
bances to affect understory species composition via
preferential recruitment and mortality dynamics in the
LEF in novel ways into the coming decades (Henareh
Khalyani et al., 2019).

High fern mortality rates after the first canopy trim in
2005 and the even higher rates after the second trim in
2014 (Figure 1) could have been due to the unavoidable
damage to ground-level plants from arborist trimming

activity (Halleck et al., 2004) but could also have been
due to the rapid increase in grass cover (Shiels et al.,
2010). Fern mortality was highest immediately following
debris deposition of Hurricane Maria (Figure 1) just as
adult (i.e., stems >10 cm dbh) tree mortality doubled
after Hurricane Maria (Uriarte et al., 2019), suggesting
that wind, a factor not included in the hurricane simula-
tion experiment, may be an indirect driver of fern mortal-
ity rates (Royo et al., 2011).

Thelypteris deltoidea, Cy. borinquena, and Cy. arborea
are the three most abundant fern species observed in our
study and showed different responses to hurricane distur-
bance (Figure 2). The resident understory fern species
(T. deltoidea and Cy. borinquena) maintained relatively
high densities throughout the study (compared to less-
common fern species) and have been recorded as com-
mon in other studies in the LEF where fern observations
have been included and Cy. arborea, though never com-
mon, appears in these studies as well (Halleck
et al., 2004; Portugal Loayza, 2005; Royo et al., 2011;
Smith, 1970). Unlike most of the other fern species pre-
sent in the CTE plots, these three common species have
very limited ranges. The distribution of T. deltoidea is
limited to Puerto Rico and a few islands in the Lesser
Antilles. Cyathea borinquena is endemic to Puerto Rico,
and Cy. arborea is limited to the Caribbean islands
and northern Colombia. In most fern hotspots (Suissa
et al., 2021), high levels of habitat variation (e.g., topogra-
phy and elevation gradients) have provided a wide variety
of niches for potential fern speciation. However, it is pos-
sible that for these three common fern species in our
study that hurricane-induced habitat heterogeneity has
instead led to various fern adaptations that have allowed
their persistence and understory dominance in wet for-
ests with hurricane disturbance regimes of the Greater
Antilles. Indeed, this has been reported for many
Caribbean tree species (Bellingham et al., 1995; Griffith
et al., 2008; Hogan et al., 2018; Tanner et al., 1991;
Vandermeer et al., 2000).

It appears that resident understory fern species have
limited opportunities for recruitment from spores under
a closed canopy. However, Sharpe and Shiels (2014)
reported that spores are produced in great numbers in
response to the increase in solar radiation from canopy
openings. The relatively high densities of the resident
fern species, T. deltoidea and Cy. borinquena, at the start
of our study, could be the result of spore release after
Hurricane Georges (1998), which occurred only 5 years
before the start of the CTE. Although the canopy damage
was not as severe during Hurricane Georges as in Hurri-
canes Hugo (1989) and Maria (2017) (Hogan et al., 2016;
Uriarte et al., 2019), it likely still created spore-driven dis-
persal and recruitment for these fern species. The steady
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decline of both T. deltoidea and Cy. borinquena in the
control plots until Hurricane Maria arrived in 2017
resulted in fern densities returning to only half of the ini-
tial numbers recorded in the CTE. An undisturbed can-
opy for almost 20 years would result in ever lower light
levels and a deeper shade habitat, leading to lower num-
bers but more reproductively mature ferns. Relatively lit-
tle soil surface leaf litter cover in an undisturbed forest
would also facilitate spore germination (although treat-
ments that created initial differences in leaf litter cover
and litterfall rates subsided over time; Lodge et al., 2014;
Silver et al., 2014). If sufficient spore production and dis-
persal are followed by successful germination and
sporeling establishment after Hurricane Maria, the
populations of resident ferns will likely again increase
throughout the LEF.

In contrast to these resident fern recruitment limita-
tions, the tree fern Cy. arborea is a successful pioneer that
mostly inhabits open areas such as roadsides and land-
slides throughout the LEF (Walker et al., 2013). The role
of the tree fern Cy. arborea as a pioneer species in colo-
nizing disturbed areas has been well documented; it has
prolific and rapid regeneration on disturbed hillslopes
following landslides (Walker et al., 2010) and also a pref-
erence for colonizing tipped-up mounds pits following
hurricane disturbance (Bellingham et al., 1995;
Walker, 2000). The height of the tree fern facilitates wind
dispersal of huge numbers of spores (Conant, 1976), and
although almost all leaves of Cy. arborea individuals are
lost in a natural hurricane, they are rapidly replaced at a
rate of one frond per month (Conant, 1976). These leaves
also rapidly mature, release spores and the fronds fall all
within about 6 months (Walker et al., 2013), which facili-
tates rapid colonization after a disturbance. Tree ferns do
not thrive in the typical low light conditions of the under-
story when the canopy closes, however, and may, there-
fore, only facilitate tree seedling and other fern sporeling
establishment in open areas or tree-fall gaps (Walker
et al., 2010). Spores of the smaller species known to colo-
nize landslides such as Pityrogramma calomelanos var.
calomelanos also appeared and were able to germinate,
albeit in small numbers after Hurricane Maria, exempli-
fying the positive effect of natural hurricane winds on
fern recruitment and new species establishment.

Simulated versus natural hurricane
responses: The effects of solar radiation
and soil moisture on understory dynamics
in the LEF

Hurricane Maria in 2017 provided more of an opportu-
nity for the recruitment of pioneer species than did either

of the experimental trim events. The pioneer species Cy.
arborea appeared in small numbers in the hurricane plots
following the second trim, but ferns over 10-cm height
recruited more in the control plots in the 2 years after
Hurricane Maria (Figure 2b). A similar trend was
observed for C. schreberiana (Figure 2b) and several less-
common pioneer species, such as Simarouba amara,
which did not respond strongly to the experimental trim-
ming but increased copiously following the natural hurri-
cane disturbance of 2017. The experimental trims opened
a relatively small area of the forest canopy, so only small
areas of the forest understory were subjected to changes
in microclimate (i.e., light and temperature), soil mois-
ture, and any interaction between the two. Thus, there
were likely relatively few available microsites for the
spores of the common tree ferns to colonize, for seedlings
from the seedling bank to flourish, or for seeds in the soil
seed bank to germinate and establish. However, when
propelled by natural hurricane-force winds, many more
spores from further dispersal distances could increase
recruitment of ferns into the small CTE plots after Hurri-
cane Maria. Similarly, bigger changes in the understory
microclimate driven by larger areas of canopy opening,
with more diffuse lateral light entry into the forest under-
story, could stimulate the germination of seeds and estab-
lishment and growth of tree seedlings (Comita, Uriarte,
Thompson, et al., 2009; Comita, Uriarte, Forero-
Montaña, et al., 2018).

A big question is why recruitment of the tree fern—
Cy. arborea (Figure 3b), and the pioneer trees such as
C. schreberiana (Figure 2b), in 2018 after Hurricane
Maria was more common in the CTE control plots than
in previously trimmed hurricane simulation plots. The
control plots are located in the same three blocks of forest
as the trimmed, hurricane simulation plots (Shiels
et al., 2010; Shiels & Gonz�alez, 2014), so we were sur-
prised at these differences. A dense grass cover appears in
hurricane simulation plots after trimming (Shiels
et al., 2010; Zimmerman, 2020a) perhaps creating a bar-
rier to leaf expansion in newly germinated spores of Cy.
arborea. Or perhaps the comparatively low amount of
surface litter on the forest floor of the control was a wet-
ter and more shaded substrate that was more suitable for
spore germination, than the previously disturbed, and
likely drier, substrate of the hurricane plots. There may
also have been a greater accumulation of spores in the
control plot soils that had not germinated as they did
after the two canopy trims in the simulated hurricane
plots. This could mean that there was a larger soil spore
bank available in the control plots ready to germinate
when the natural hurricane occured.

Similar processes as described above for ferns have
likely affected sapling demographics in the control
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relative to canopy trimmed plots (Luke et al., 2016; Royo
et al., 2011). In 2017 at the time of Hurricane Maria,
there could have been more seeds in the soil seed bank
and seedlings in the seedling bank of the control plots,
which had not already grown to sapling stage than in
trimmed, hurricane simulation plots. After Hurricane
Maria, these suppressed seedlings in the control plots
would be able to grow rapidly. Similarly, accumulated
seeds of pioneer species would germinate and grow
quickly to reach sapling size, being recorded as recruits
in the post-Maria tree census. In all of the plots—the hur-
ricane simulation plots with two canopy trims and a hur-
ricane, and the control plots with only one hurricane
impact—sapling densities will decline as the canopy
closes and reduces light, causing shade-induced mortality
of pioneer species, and density-dependent mortality for
abundant shade-tolerant species (Comita, Uriarte,
Thompson, et al., 2009; Comita, Uriarte, Forero-
Montaña, et al., 2018; Luke et al., 2016; Muscarella
et al., 2013; Royo et al., 2011; Uriarte et al., 2018). Com-
positional shifts toward more pioneer and secondary-suc-
cessional species in the CTE may be partly due to
increased throughfall and wetter soils in the trimmed
plots, with soil VWC being >0.1 cm3 water/cm3 soil wet-
ter in trimmed plots (Appendix S1: Figure S2; Van
Beusekom et al., 2020). Soil moisture also has effects on
seedling survival in the LEF, with seedlings growing in
dry sites having slightly increased survival with increas-
ing soil moisture (i.e., in wetter years), and vice versa.
For example, dry years preferentially benefit the survival
and potentially the recruitment of liana seedlings in the
LEF, especially in wetter areas (Umaña et al., 2019); how-
ever, the predominant trend is for high soil moisture to
decrease seedling survival, especially in the wettest
microsites, especially for late-successional shade-tolerant
species (Uriarte et al., 2018).

Data from our analyses of compositional changes in
the CTE plots show that higher soil moisture levels inter-
acted with the experimental canopy trimming light
increases to shift community composition toward
pioneer-type tree species associated with secondary suc-
cession and past land-use legacies in the LEF (see the
lower left quadrant of MDS space, Figure 4b, or negative
sides of MDS axes in Appendix S1: Figures S3 and S4;
Hogan et al., 2016; Uriarte et al., 2009), and away from
old-growth, more shade-resistant species (see upper right
quadrant of the MDS ordination space, Figure 4b, or posi-
tive sides of NDMS axes in Appendix S1: Figures S3 and
S4). Our results are similar to those of Arasa-Gisbert
et al. (2021), who reported canopy openings caused by
tree removal in a Mexican tropical forest caused a shift
toward pioneer and secondary-successional generalist
species because of the lower recruitment of old-growth,

late-successional species. Thus, in addition to light avail-
ability, soil moisture content is a distinct, yet critical fac-
tor that governs the composition of the regenerating
understory plant community following hurricane distur-
bance. Drier conditions tend to support increased relative
abundances of many late-successional species in the LEF
(e.g., M. bidentata and Sloanea berteroana) (Umaña
et al., 2019; Uriarte et al., 2018), therefore hurricane-
driven increases in throughfall likely also facilitate pio-
neer species recruitment after canopy disturbance.

In conclusion, the demography of the understory
plant community—tree saplings, ferns, and the ground-
dwelling H. caribaea—responds dynamically to repeated
hurricane disturbances, indicating that an increased fre-
quency of hurricanes will reduce understory recruitment
after each disturbance event, if there is not sufficient time
to allow for stand thinning and development, or regener-
ation of the seed and seedling banks in between hurri-
canes (Brokaw et al., 2012; Brokaw & Grear, 1991). This
reduction in recruitment to repeated hurricanes may be
greatest for late-successional species (e.g., M. bidentata
and S. berteroana), when increased solar radiation and
soil moisture in the understory create environmental con-
ditions that favor the recruitment of pioneer species at
the expense of late-successional species. Hurricane-
induced increases in canopy openness and solar radiation
and soil moisture both drive community compositional
changes in the understory plant community. Increased
solar radiation is the main driver, however, increased
throughfall and lower transpiration from canopy
trimmed trees increase soil moisture availilibity to shape
the species composition of the regenerating understory. A
significant future drying trend is projected for Caribbean
forests, including wet forests at Luquillo (Ramseyer
et al., 2019), so the relative strength of climate drying ver-
sus increased throughfall and lower transpiration
because of hurricane disturbance will infleunce short-
term understory responses to hurricanes (e.g., Maria) and
longer-term forest dynamics.
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