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Abstract: The mechanisms of the maintenance of plant diversity in forests have been extensively
studied because of their ecological importance. The study of the regeneration and growth dynamics
of herbaceous understory communities in forests is relatively more common than that of woody plant
overstory and understory communities. To investigate which environmental factors (plant roots,
forest litter, or both) control seedling survival, growth, and production in the herbaceous layer in the
context of increasingly severe seasonal drought caused by global climate change, we performed a
seedling growth experiment of the herbaceous layer influenced by the interaction of plant roots and
forest litter through a manipulative complete block experiment, crossed with an irrigation experiment,
in a montane subtropical moist evergreen broad-leaved forest of southwestern China. Within both the
control and watered plots, we established four experimental subplots with plant roots and forest litter
included (R+L+); plant roots included, but forest litter excluded (R+L−); plant roots excluded, but
forest litter included (R−L+); and both plant roots and forest litter excluded (R−L−). After one year,
the R+L+ treatment in the control plot had statistically less species richness and plant individuals,
shorter mean and maximum seedling heights, and less dry biomass of plant seedlings than those
in the other seven experimental treatments. Across all the experimental replicates, the pooled data
showed that plant roots, forest litter, and seasonal drought, together, inhibited all the dependent
herbaceous growth variables. Our study demonstrates how plant roots, forest litter, and seasonal
drought synergistically regulate seedling establishment and the growth of the herbaceous layer in
tropical and subtropical forest understory. This synergistic regulation changes plant physiological
responses and forest evolution through controlling plant diversity and the individual richness of the
herbaceous layer in the context of sustained global climate change.

Keywords: global climate change; individual richness; plant diversity; plant height; dry biomass;
seedling growth; synergistic effect

1. Introduction

The mechanisms that explain plant diversity and coexistence in forests, such as forest
successional sequence, environmental heterogeneity, resource limitation, interspecific and
intraspecific interactions, phylogenetic community structure, metacommunity dynamics,
and recurrent anthropogenic and natural disturbance dynamics, are numerous [1–3]. These
mechanisms have obvious regionalities and particularities among different forests. For
example, extreme cold, frequent drought, selective logging, random periodic fire, and
resource availability and heterogeneity are the main factors influencing plant diversity
and productivity in boreal forests [4–6]. Light availability, large herbivore activity, pollu-
tant deposition fluxes, nutrient availability, climate change, and anthropogenic activities
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partly explain the differences in plant compositions and local biodiversity in temperate
forests [7–9]. Nutrient availability, climate change, abundant natural resources, anthro-
pogenic activities, habitat heterogeneity, and the local species pool support high plant
diversity and complex structures in tropical and subtropical forests [10–12]. Most studies
of these mechanisms of plant diversity and species coexistence in forests mainly focus
on the canopy dominant trees, climbing lianas, and understory shrub species. There is
a smaller number of studies on the mechanisms controlling herbaceous plant diversity
and the seedling growth of forest understory compared to the number of similar studies
on overstory and understory woody plants. In addition, most previous studies on plant
diversity and seedling growth in the herbaceous layer of forests have usually involved
interspecific and intraspecific interactions, such as heterotoxic and autotoxic effects, i.e.,
allelopathy, but few studies have focused on forest litter and plant roots in the context of
changed seasonal drought patterns resulting from global climate change. Plant species
in the herbaceous layer in forests are affected by light, water, temperature, and nutrients,
which are regulated by the aboveground part of dominant tree species, and are simulta-
neously controlled by soil moisture, nutrient availability, and root exudates [9–11]. Plant
roots control seedling diversity and individual growth in the herbaceous layer by inter-
acting with the soil microbial population, activating soil mineral nutrients, and secreting
various exudates. Forest litter regulates seed germination and seedling establishment
by obstructing light, temperature, and water; releasing various nutrients; and secreting
various exudates [13–16]. Which of these mechanisms plays a dominant role in impacting
the herbaceous layer in forests? It should depend on the biotic and abiotic conditions in
different forest ecosystems. Therefore, the environmental factors that control plant diversity
and seedling growth in the herbaceous layer of forests should be studied together instead
of separately.

Global climate change is persistently intensifying and will continue to negatively
affect various terrestrial ecosystems via severe disturbances such as extreme weather
events and natural disasters [17–19]. Disturbances driven by global climate change can
negatively influence forest structure and ecological function very suddenly, and climate
change also simultaneously subjects terrestrial forest ecosystems to unprecedented slower-
type pressures (e.g., warming, elevated CO2, drought, pollutant deposition, etc.). Such
global change drivers, together with intense anthropogenic disturbances, may seriously
alter normal forest development and species evolution, and potentially modify the known
mechanisms of plant diversity maintenance and species coexistence. Drought, especially
as a frequent press-type disturbance in forest ecosystems, is intensively studied, as severe
and frequent drought events become increasingly common, and can result in massive litter
deposition (trees defoliate because of severe water stress for reducing water losses through
leaf transpiration and surviving the drought event), severe forest fire events, and extensive
tree mortality [20–22]. Occasionally, and temporarily, severe drought can stimulate plant
litter deposition and induce seedling mortality over the short term due to the deficit stress
of soil moisture [22–24]. Long-term extreme drought likely affects the primary production
and successful processes of forest ecosystems, resulting in drastically altered forest structure
and plant composition or alternative stable ecosystem states [22,25,26]. While research has
sought to measure these long- and short-term apparent consequences of drastic drought
events, regular seasonal drought in seasonal forests is often overlooked because of its
relative regularity and predictability, as well as its less drastic effect on forest structure and
plant composition. However, it is often reported that global climate change could likely
increase the severity and magnitude of seasonal drought in seasonal forests, and potentially
induce greater seasonality in seasonal forests [27–29]. Therefore, it is necessary to explore
the impacts of seasonal drought on the structure and function of various forest ecosystems,
including canopy dominant trees, climbing lianas, and understory shrub species, as well as
plant diversity and seedling growth in the herbaceous layer near the ground.

We expected that plant diversity (measured as species richness) and seedling growth
in the forest herbaceous layer would be influenced by the interaction of plant roots, forest
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litter, and seasonal drought. In this study, we selected a subtropical moist evergreen broad-
leaved forest in Yunnan province of southwestern China as our study site, established two
1-ha field moisture research plots (control plot vs. watered plot), and set up four subplots
nested within each moisture treatment that comprised all combinations of plant root and
forest litter inclusion and exclusion. We hypothesized that the independent variables of
plant roots, forest litter, and seasonal drought inhibit plant diversity and seedling growth in
the herbaceous layer on the ground surface of the forest because adult woody individuals
often have stronger competitive ability than plant seedlings for water and nutrients in
the herbaceous layer, and the thick undecomposed forest litter physically isolates plant
seeds from soil [13–16]. Our research objective was to investigate the impact of plant roots,
forest litter, and seasonal drought on the dependent variables, including the diversity
and abundance of plants, the mean and maximum height of plant seedlings, and the dry
biomass of plant seedlings in the herbaceous layer near the ground of the forest.

2. Materials and Methods
2.1. Study Sites

This study was conducted in a montane subtropical moist evergreen broad-leaved
forest (24◦20′40′′ N, 102◦33′50′′ E; at an elevation of about 1740 m a.s.l.), which was one
important part of the Ecological Botanical Garden of central Yuxi City (ECY) in Yunnan
province of southwestern China (Figure 1). The ECY was officially established in early
2016 with the main purpose of highlighting local forest characteristics, popularizing the
concept of natural scientific education and ecological research of forest ecosystems, and
maintaining local ecological landscapes. More importantly, the ECY was also constructed
to protect the local large-area moist evergreen broad-leaved forest, which was a relatively
diverse natural forest without intense human disturbances in the central area of Yuxi city.
Management focused on the strict protection of the existing evergreen broad-leaved forest
with the endemic tree species in Yunnan as the dominant species, such as Schima wallichii
(DC.) Choisy, Quercus franchetii Skan, Lithocarpus confinis Huang, Quercus acutissima Carruth.,
Cyclobalanopsis delavayi (Franch.) Schott., Cyclobalanopsis glaucoides Schotky, Castanopsis fleuryi
Hick. et A. Camus, Castanopsis delavayi Franch., etc. This forest had already existed as
a relatively diverse natural forest since 1978, when the predecessor of the Yuxi Normal
University was established. Stable forest structure and plant composition, scattered nat-
ural fallen woods, and relatively stable yearly primary production (unpublished data)
demonstrate that this is most likely a mature forest.

Yuxi city is located in a high plateau area with a relatively low latitude, and is strongly
affected by the south-west monsoon climate [30,31]. The climate spatiotemporally changes,
with the regional complex geography and the comprehensive influences of humidity and
dry air flow from the Indian Ocean and the Beibu Gulf, result in distinct dry and wet
seasons during the year. The wet season mainly occurs in summer and autumn from
May to October, and the dry season mainly occurs in winter and spring from November
to April. According to the meteorological data from 1971 to 2015, the annual average
temperature was 15.4–24.2 ◦C, with the highest temperature being 32.6 ◦C in May and the
lowest being −5.5 ◦C in December (from The Meteorological Bureau of Yuxi City). The
annual frost-free period was 244–365 d with an annual sunshine duration of 2115–2285 h.
Annual and diurnal temperatures both had apparent changes. Annual precipitation was
787.8–1000 mm, mostly concentrated between June and October; annual evaporation was
around 1800 mm. The precipitation in 2021 was about 910 mm and evaporation was about
1700 mm. Occasionally, it snowed a small amount in winter. Annual relative humidity was
68%–79%.

The montane subtropical moist evergreen broad-leaved forest in this study was located at
the peak of the Longma Hills with a steep slope (32–53◦) in the campus of Yuxi Normal Univer-
sity. The forest structure and plant composition are protected very well without intense human
disturbances because of the long-term strict protection provided by the Forestry Bureau of Yuxi
city and the Logistics Management Department of Yuxi Normal University. After S. wallichii,
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Q. franchetii, L. confinis, and Q. acutissima, Pinus yunnanensis Franch is also one of the domi-
nant tree species in the forest. Understory shrub species mainly include Photinia serratifolia
(Desfontaines) Kalkman, Pyracantha fortuneana (Maxim.) Li, Buddleja officinalis Maxim., and
Serissa japonica (Thumb.) Thunb. Herbaceous species mainly include Nephrolepis cordifolia
(L.) C. Presl, Cyclosorus interruptus (Willd.) H. Ito, Arthraxon hispidus (Trin.) Makino, and
Ageratina adenophora (Spreng.) R.M. King et H.Rob. The soil is typically red sandy loam devel-
oped from argillaceous rocks and carbonate rocks with the apparent characteristics of weak
acid (pH = 5.3~5.8), low organic matter (53.46~73.25 g/kg), few soil microbes (0.51–0.58 g/kg
for soil microbial biomass carbon and 0.08–0.12 g/kg for soil microbial biomass nitrogen),
and low soil mineral nutrient contents (0.197%–0.245% for soil total nitrogen, 0.039%~0.048%
for soil total phosphorus, 1.74%~2.25% for soil total potassium, 0.173%~0.222% for soil cal-
cium, 0.192%~0.227% for soil magnesium, 0.004%~0.006% for soil sulphur) in soil samples of
0–10 cm depth.
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Figure 1. (A) Study site in Yunnan province of southwestern China (the area in light yellow is
Yunnan province and the blue solid circle denotes the study site). (B) Photo of the forest in this study.
Control subplots: (a) the subplot with plant roots and forest litter inclusion; (b) the subplot with
plant roots inclusion, but forest litter exclusion; (c) the subplot with plant roots exclusion, but forest
litter inclusion; (d) the subplot with plant roots and forest litter exclusion. Watered subplots: (a′) the
subplot with plant roots and forest litter inclusion; (b′) the subplot with plant roots inclusion, but
forest litter exclusion; (c′) the subplot with plant roots exclusion, but forest litter inclusion; (d′) the
subplot with plant roots and forest litter exclusion in watered plot.
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2.2. Experimental Design

From early 2016, when the ECY was officially established, the Logistics Management
Department of the Yuxi Normal University started irrigating ground vegetation and thick
debris in part of the forest during the dry season every year in an area close to the under-
graduates’ dormitory and canteen to prevent forest fire. The other part of the forest without
intensive human activities remained in a natural state.

We established a 1-ha (200 m × 50 m) field research plot in the irrigated area, and
simultaneously established a control plot of the same scale nearby in the non-irrigated
natural area in May 2019. The minimum distance between these two field research plots was
>30 m. These two field research plots had similar forest structures and plant compositions.

During this study, the soil moisture in the control and watered plots was not manipu-
lated during the wet season, because soil moisture of >40% could meet the requirement of
plant growth. The watered plot was artificially irrigated during the dry season, because
all plant individuals in the herbaceous layer of the study plots withered away with <4%
moisture. The watered plot was irrigated weekly in the dry season, maintaining gravimetric
soil moisture of 0–10 cm depth at >40%.

In both the control and watered plots, we established three replicate 20 m × 20 m
study blocks within a 200 m × 50 m study area with at least 20 m between every replicate
pair (Figure 2). Within each block, we set up four 1 m × 1 m treatment subplots with
each of the following four treatments assigned randomly to the subplots: (1) roots and
litter inclusion (R+L+; leaving plant roots and forest litter in the subplot in their natural
state); (2) roots inclusion and litter exclusion (R+L−; leaving plant roots in the subplot,
but sweeping away forest litter); (3) roots exclusion and litter inclusion (R−L+; leaving
forest litter in the subplot, but cutting and removing plant roots); and (4) roots and litter
exclusion (R−L−; cutting and removing plant roots and sweeping away forest litter in the
subplot) (Figures 1 and 3). The field experimental design is a crossed design (Figure 2) [32].
All four treatments were represented in each of the three replicate blocks. The R−L+ and
R−L− subplots were vertically excavated down to the soil parent material and insulated
subplot soils from outside by galvanized steel sheets that were 1 mm thick. The average
thickness of the soil profiles was about 1.5 m. To keep the original state of the soil profiles
to the greatest extent, we only removed all the plant roots along the perimeter of the soil
profiles with diameters of >1 cm. The R+L− and R−L− subplots were covered by the
plastic-framed structures (1 m × 1 m × 1 m), which were constructed of 2 cm diameter
PVC tubes with 1 mm mesh fiberglass screens.
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Figure 3. The crossed design of this study. Factor 1, factor 2, and observations with solid line frame
represent subplots in control plot, and the dotted line frame represent subplots in watered plot.

In collaboration with the manipulated irrigation performed by the Logistics Man-
agement Department of the Yuxi Normal University, we checked and managed our field
experimental subplots weekly. We collected and stored rainfall in a reservoir at the peak of
the Longma Hills during wet season (from June to November 2020), and irrigated subplots
in watered plot when soil moisture in the subplot was less than 40% during dry season. We
inserted a soil hygrometer (FC28 Hygrometer) into soil layer with 10 cm depth in watered
subplots, checked it every weekend, and applied around 10 L of water to each subplot,
keeping soil moisture >40%. Forest litter on the top of fiberglass screens was swept away in
time to unblock sunlight and throughfall; all seeds on each fiberglass screen were collected
and evenly returned to the corresponding subplot.

2.3. Data Collection

Two field experimental plots (control plot vs. watered plot) were established in May
2019, and the four subplots in each experimental plot were simultaneously set up. All
investigations of plant diversity and seedling growth in the subplots were performed from
January to December 2021. All seedlings in subplots were removed in time (including over-
ground stems and leaves, as well as underground roots) before January 2021 to eliminate
the possible effects of original litter leachates (in the R+L− and R−L− subplots) and root
exudates (in the R−L+ and R−L− subplots) on seed germination and plant growth in the
two experimental plots.

At the end of December 2021, all fiberglass screens that covered the subplots were
removed, and all plant seedlings, except bryophytes, were counted and measured. We
counted all individuals for each plant species, and measured plant height for each individ-
ual and mean height for each subplot (the height that more than 70% of plant individuals,
in bulk, reached in the subplot). Maximum height of plant seedlings was measured using
the highest plant individual in each subplot. We harvested all plants in each subplot, put
them in paper envelopes, and dried them at 65–75 ◦C for several days until constant weight
was achieved.

2.4. Data Analysis

We statistically compared species richness, the number of plant individuals, mean and
maximum height, and the dry biomass of plant seedlings among four subplots in control
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and watered plots by non-parametric Kruskal–Wallis ANOVA using the software Statistical
Package for the Social Sciences 20 (SPSS 20; IBM Corporation, Chicago, IL, USA) [33].

To understand how the four treatments (R+L+, R+L−, R−L+, and R−L−) and two
plots (control plot vs. watered plot) were related to the five dependent variables (species
richness, the number of plant individuals, mean and maximum height, and dry biomass
of plant seedlings), we fitted linear mixed effects models with fixed effects for treatment,
plot, and the variables’ interaction, and a nested plot-treatment random intercept term
(1|treatments/plot) in R (V 3.0.1, R Development Core Team 2017) [34].

To test the synergistic effect of plant roots, forest litter, and seasonal drought on the
five dependent variables, we pooled the data among replicate subplots in the control plot
(i.e., plant roots effect in the R+L− treatment, forest litter effect in the R+L− treatment,
and no plant roots and forest litter effect in the R−L− treatment), and then pooled the
corresponding data among replicate subplots with R+L+ treatment in the watered plot
(i.e., plant roots, forest litter, and water effect together), and then compared the data of
each corresponding subplot (i.e., correspondingly, plant roots and water effect in the R+L−
treatment, forest litter and water effect in the R+L− treatment, and only water effect in the
R−L− treatment).

3. Results
3.1. Species Richness and the Number of Plant Individuals

Although plants were absent from the R+L+ subplot in the control plot, numerous
plant species were found in the other seven subplots in the control and watered plots
(Figure 4a and Table 1). In the control plot, 5 (±1) /m2 plant species were found in
the R−L− subplot, which belonged to three different families; 3 (±1) /m2 plant species
appeared in the R+L− subplot, which belonged to three different families; and 1 (±1)
/m2 plant species was found in the R−L+ subplot. In the watered plot, the most plant
species, with 12 (±1) /m2, existed in the R−L− subplot, which belonged to ten different
families; the R+L− and R−L+ subplots had the same number of plant species but in
different compositions; the R+L+ subplot had the least plant species, with 2 (±1) /m2,
which belonged to two different families.
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statistical differences among the four experimental treatments in control plot (or in watered plot) at
α = 0.05.
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Table 1. Species richness and the number of plant individuals (/m2; ±SE) in each experimental
treatment in control and watered plots.

Experimental
Plot Treatment Scientific Name Family Individuals

(/m2; ±SE)

Control plot

R+L+ — — —

R+L−

Nephrolepis cordifolia (L.)
C. Presl Nephrolepidaceae 5 (2)

Ageratina denophora
(Spreng.) R.M. King et

H.Rob.
Asteraceae 1 (1)

Arthraxon hispidus
(Trin.) Makino Gramineae 1 (1)

R−L+ A. adenophora Asteraceae 1 (1)

R−L−

A. adenophora Asteraceae 29 (2)
N. cordifolia Nephrolepidaceae 17 (3)

Erigeron acris L. Asteraceae 8 (3)
Hedyotis diffusa Willd Rubiaceae 2 (1)

Senecio scandens
Buch.-Ham. Ex D. Don Asteraceae 1 (1)

Watered plot

R+L+

Cinnamomum camphora
(L.) Presl Lauraceae 1 (1)

Peracarpa carnosa (Wall.)
Hook. F. et Thoms. Campanulaceae 1 (1)

R+L−

A. adenophora Asteraceae 13 (2)
Cibotium barometz (L.) J.

Sm. Dicksoniaceae 3 (1)

Pteris ensiformis Burm. Pteridaceae 2 (1)
Crassocephalum

crepidioides (Benth.) S.
Moore

Asteraceae 2 (1)

E. acris Asteraceae 2 (1)

R−L+

A. hispidus Gramineae 10 (2)
A. adenophora Asteraceae 9 (1)

Youngia japonica (L.) DC Asteraceae 8 (1)
P. carnosa Campanulaceae 1 (1)

Broussonetia papyrifera
(Linnaeus) L’Heritier ex

Ventenat
Moraceae 1 (1)

R−L−

N. cordifolia Nephrolepidaceae 40 (3)
Cyclosorus interruptus

(Willd.) H. Ito Thelypteridaceae 21 (3)

A. adenophora Asteraceae 13 (2)
A. hispidus Gramineae 12 (3)

P. ensiformis Pteridaceae 10 (2)
Lespedeza bicolor Turcz. Fabaceae 9 (2)

E. acris Asteraceae 6 (2)
C. barometz Dicksoniaceae 4 (1)

Laggera pterodonta (DC.)
Benth. Asteraceae 3 (1)

Y. japonica Asteraceae 3 (1)
Buddleja asiatica Lour. Scrophulariaceae 3 (2)

Solanum nigrum L. Solanaceae 3 (2)
Phytolacca americana L. Phytolaccaceae 2 (1)

The number of plant individuals varied among different subplots in both the control
and watered plots (Figure 4b and Table 1). In the control plot, the R−L− subplot had
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the most plant individuals with 56 (±2) /m2, the R+L− subplot had the second most
plant individuals with 7 (±1) /m2, and the R−L+ (1 ± 1 /m2) and R+L+ (0 /m2) sub-
plots had the third and fourth least plant individuals, respectively. In the watered plot,
the most plant individuals also appeared in the R−L− subplot with 123 (±7) /m2, the
second most plant individuals occurred in the R−L+ subplot with 28 (±2) /m2, and the
R+L− (21 ± 2 /m2) and R+L+ (2 ± 1 /m2) subplots had the third and fourth least plant
individuals, respectively.

3.2. Mean and Maximum Plant Heights

The variation in the mean height of plant seedlings among the four subplots in the
control plot was apparently greater than that of the watered plot (Figure 5a). In the control
plot, the mean height of plant seedlings in the absence of both roots and litter was 12.5
(±2.4) cm, followed by the R+L− (7.0 ± 1.5 cm) and R−L+ (2.0 ± 0.3 cm) subplots. No
plants grew in the R+L+ subplot. In the watered plot, the highest mean height of plant
seedlings occurred in the R−L− subplot with 33.8 (±2.1) cm. The mean height of plant
seedlings in the R−L+ subplot was the second tallest, measuring 28.2 (±2.3) cm, and the
mean height of plant seedlings in the R+L+ and R+L− subplots was about 6.5 cm without
statistical differences.
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Figure 5. (a) Mean and (b) maximum heights (cm; ±SE) of plant seedlings in each experimental
treatment in control and watered plots. Note: the different lowercase letters, a, b, c, and d (or a′, b′, c′,
and d′), indicate statistical differences among the four experimental treatments in control plot (or in
watered plot) at α = 0.05.

The mean and maximum heights of different plant species in each subplot showed
obvious stratification in the control and watered plots (Table 2). S. scandens and N. cordifolia
were the tallest plants in the R−L− and R+L− subplots of the control plot, respectively,
because S. scandens was a liana and N. cordifolia occupied the most space in the subplot.
Plant species that rapidly germinated and sprouted occupied the most space in the subplot
and grew fast to reach the highest level. S. nigrum, A. hispidus, and A. adenophora in were
the tallest plants in the R−L−, R−L+, and R+L− subplots of the watered plot, respectively.
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Table 2. Mean and maximum heights of plant species (cm; ±SE) in each experimental treatment in
control and watered plots.

Experimental Plot Treatment Scientific Name Mean Height
(cm; ±SE)

Maximum Height
(cm; ±SE)

Control plot

R+L+ — — —

R+L−

— 10.5 (1.0) 22.0 (1.9)
Nephrolepis cordifolia (L.)

C. Presl 7.9 (0.4) 7.9 (0.4)

Ageratina denophora
(Spreng.) R.M. King et

H.Rob.
4.6 (0.6) 4.6 (0.6)

R−L+ Arthraxon hispidus
(Trin.) Makino 2.0 (0.3) 2.0 (0.3)

R−L−

A. adenophora 7.6 (0.7) 37.3 (2.8)
A. adenophora 5.6 (0.3) 8.7 (0.9)
N. cordifolia 10.8 (0.9) 27.6 (3.1)

Erigeron acris L. 25.5 (2.9) 29.3 (2.0)
Hedyotis diffusa Willd 34.6 (1.2) 34.6 (1.2)

Watered plot

R+L+

Senecio scandens
Buch.-Ham. Ex D. Don 8.7 (0.3) 8.7 (0.3)

Cinnamomum camphora
(L.) Presl 5.9 (0.2) 5.9 (0.2)

R+L−

Peracarpa carnosa (Wall.)
Hook. F. et Thoms. 9.4 (1.6) 15.8 (1.8)

A. adenophora 2.5 (0.4) 4.6 (0.7)
Cibotium barometz (L.) J.

Sm. 4.7 (0.3) 6.6 (0.6)

Pteris ensiformis Burm. 5.8 (0.9) 12.2 (0.8)
Crassocephalum

crepidioides (Benth.) S.
Moore

1.7 (0.6) 3.2 (0.2)

R−L+

E. acris 64.9 (7.2) 84.7 (4.4)
A. hispidus 36.9 (2.8) 41.3 (3.1)

A. adenophora 1.7 (0.4) 3.6 (0.4)
8.6 (0.8) 8.6 (0.8)

P. carnosa 9.6 (0.4) 9.6 (0.4)

R−L−

Broussonetia papyrifera
(Linnaeus) L’Heritier ex

Ventenat
6.6 (0.2) 14.8 (3.0)

N. cordifolia 31.2 (3.0) 73.8 (6.0)
Cyclosorus interruptus

(Willd.) H. Ito 30.4 (2.8) 47.5 (2.6)

A. adenophora 43.6 (5.3) 89.6 (3.9)
A. hispidus 11.7 (2.0) 31.0 (3.5)

P. ensiformis 5.1 (0.7) 6.6 (1.9)
Lespedeza bicolor Turcz. 18.7 (2.4) 83.8 (5.7)

E. acris 32.77 (2.9) 73.9 (4.0)
C. barometz 3.6 (0.6) 10.5 (1.2)

Laggera pterodonta (DC.)
Benth. 20.6 (2.7) 66.4 (4.1)

33.6 (3.2) 51.7 (5.4)
Buddleja asiatica Lour. 102.2 (20.5) 130.2 (4.1)

Solanum nigrum L. 10.2 (1.9) 22.8 (1.6)



Forests 2023, 14, 712 11 of 20

3.3. Plant Dry Biomass

The dry biomass of the plant seedlings varied among the four subplots in the control
and watered plots (Figure 6). In the control plot, dry biomass reached the highest value
with 34.6 (±3.4) g in the R−L− subplot, followed by the R+L− and R−L+ subplots. In
the watered plot, dry biomass reached the highest value with 228.2 (±12.8) g in the R−L−
subplot, followed by the R−L+ and R+L− subplots. The R+L+ subplot had the least dry
biomass with 5.4 (±0.6) g.
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3.4. Analyses of the Controlled Environmental Factors

The individual and combined effects of the variables manipulated in this experiment,
i.e., the presence of plant roots, forest litter, seasonal drought, and their interactions, were
statistically analyzed to determine their effects on species richness, the number of plant
individuals, mean and maximum heights, and the dry biomass of plant seedlings (Table 3).
The responses of seedling species numbers, plant density, and height to the presence
of forest litter was contingent on whether the plot was watered during the dry season.
Seedling density and both mean and maximum seedling height were second highest in the
R−L+ treatment combination in the watered plot, but were second lowest in the control
plot, while the R+L− treatment showed the opposite pattern. Interactions between plant
roots and forest litter, plant roots and manipulated water, and forest litter and manipulated
water seem to have influenced these dependent variables.

Table 3. Results of the mixed linear model in R (V 3.0.1) that tested how the four experimental
treatments in control and watered plots affect the five groups of dependent variables (species richness,
the number of plant individuals, mean and maximum heights, and the dry biomass of plant seedlings).

Treatment Species Richness The Number of
Plant Individuals

Mean Height of
Plant Seedlings

Maximum Height of
Plant Seedlings

Dry Biomass of
Plant Seedlings

Water 6.06 * 82.93 * 15.26 * 35.00 * 9.03 *
Roots −4.33 ** −5.13 * −8.83 ** −11.66 ** −1.77 **
Litter 5.00 ** 20.20 * 7.82 * 24.19 * 2.07 *

Water + Roots −5.53 *** −1.72 *** −5.19 *** −12.54 *** −14.87 ***
Water + Litter 6.67 *** 35.57 *** 15.21 *** 40.43 *** 20.30 ***
Roots + Litter −8.07 *** −75.92 *** −27.16 *** −64.33 *** −32.53 ***

Water + Roots +
Litter −11.33 *** −89.13 *** −39.77 *** −94.67 *** −173.30 ***

Note: “*”, “**” and “***” are for significant values at <0.05, <0.01, and <0.001, respectively.
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3.5. Synergistic Analyses

Synergistic effects of treatment combinations occurred in most of the dependent variables
(Figure 7). Except for the species richness and the mean and maximum heights of plant
seedlings in the R+L− subplot in the watered plot vs. that of the R+L− subplot in the control
plot and in the R+L+ subplot in the watered plot, the other determined data, including
species richness, the number of plant individuals, the mean and maximum heights of plant
seedlings, and the dry biomass, were statistically greater in the subplots in the watered plot
than the combined data in the corresponding subplots in the control plot. In addition, the
corresponding values in the R+L+ subplot in the watered plot, i.e., synergistic effects of plant
roots, forest litter, and seasonal drought, were widely present in the process of controlling
plant diversity and seedling growth in the herbaceous later on the ground surface of forest.
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for the corresponding separate subplots in the control plot, for the subplot with R+L+ treatment in
the watered plot, and the corresponding values in the watered subplots. Values are beside the sum of
values (for species richness, number of plant individuals, and dry biomass), the average value (for
mean height of plant seedlings), and the maximum value (for maximum height of plant seedlings).
Note: C in the front of each treatment means “control plot”; W in the front of each treatment means
“watered plot”. Note: the different lowercase letters, a and b (or a′ and b′, or a” and b”), indicate
statistical differences among the four experimental treatments in control plot (or in watered plot) at
α = 0.05.

4. Discussion
4.1. Impacts of Forest Litter on Plant Diversity and Seedling Growth in the Herbaceous Layer

Forest litter regulates plant diversity and seedling growth in four ways: physical
impacts, chemical reactions, biological interactions, and biochemical functioning [35,36].
Thick layers of necromass increase coarse organic matter inputs to mineral soil, which can
improve soil structure, reduce soil bulk density, and increase soil porosity to benefit plant
seed germination and seedling growth [36,37]. Physical damage can arise from massive
deposits of coarse necromass and litter and prevent seedling establishment [38,39]. The
chemical release of organic carbon and nutrients from forest litter can be used by plant
seedlings [40–42]. The massive recruitment and rapid growth of seedlings at the beginning
of the wet season and after disturbance are primarily functions of sufficient soil moisture,
adequate soil nutrients, and abundant light [15,40,43]. Variations in species composition
and the elemental stoichiometry of forest leaf litter result in varying plant biomass, decom-
position dynamics, soil nutrients, and microbial communities in soil, which can regulate
forest microenvironments, species composition, and plant diversity [13,16,44,45]. The bio-
chemical interactions among plants in forests, i.e., allelopathy, can also promote or inhibit
seed germination and seedling growth [46–48]. In the control plot of our study, forest
litter significantly reduced species richness, the number of plant individuals, the mean
and maximum heights of plant seedlings, and the dry biomass of plant seedlings. During
weekly plot management, we found that many plant seeds in the thick litter layer were
isolated from the mineral soil by leaf litter and stored in the thick litter layer during the dry
season. Although some plant seeds could germinate during the wet season, their primary
roots were unable to pass through the thick litter layer to reach the mineral soil before
the next dry season came, which likely resulted in seedling mortality. We fitted the linear
relationships between the thickness of forest litter, plant diversity, and the individuals
among all the subplots, which showed apparent negative linear relationships (Figure 8).
A few plant seedlings buried in the thick litter layer during the next dry season may not
survive because they will not be able to compete with the strong root systems of sur-
rounding adult trees for low soil moisture and nutrients. In addition, some seeds of plant
species require light to germinate, while some some require dark environments, resulting in
different plant compositions between the L− and L+ subplots. We found many bryophyte
species (Pogonatum inflexum (Lindb.) Lac., Tortula subulata Hedw., Hypnum plumaeforme
Wils., and Funaria hygrometrica Hedw.) and many bryophyte individuals in the R+L− and
R−L− subplots in the control and watered plots, which proved that forest litter could
inhibit the growth of bryophyte species.

4.2. Impacts of Plant Roots on Plant Diversity and Seedling Growth in the Herbaceous Layer

With the exception of forest litterfall, plants interact with soil and soil microbes mainly
through roots [49–51]. Existing plant roots in the soil can inhibit root growth and the
extension of surrounding plants through competition for soil moisture and nutrients, which
are both greatly limited during seasonal drought, regardless of forest type, including
boreal, temperate, subtropical, and tropical forests [52–55]. Adult trees often have much
stronger root systems than annual or biennial herbaceous plants and woody seedlings. The
strong root systems of adult tree individuals have overwhelming advantages in soil water
absorption and nutrient uptake over the small root systems of plant seedlings, especially
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during the dry season when soil moisture and nutrient availability is greatly limited [56–58].
Therefore, seedlings and small trees are more likely threatened by carbon and nutrient
starvation than adult trees in forests, especially under drought stress [59–61]. Certainly, the
withered roots of dead adult trees can decompose and release organic carbon and various
nutrients to soil systems, and support seedlings by providing sufficient light resources in
forest gaps [62–64]. In addition, root exudates can be a promoter or an inhibitor in the
process of seed germination and seedling growth of forest understory plants [65–67]. In
the control plot of our study, strong root systems of adult trees surrounding the subplots
depressed all five determined plant variables. At least four reasons could potentially
explain this: (1) The strong root systems of adult trees occupied most of the living space
in the topsoil, resulting in less living space, or none at all, for plants in the herbaceous
layer [68]. (2) There might have been fierce competition for soil moisture and nutrients
from surrounding adult trees [68]. (3) The soil microbial population coexisting with the
strong root systems of adult trees negatively influenced the normal growth of plants in the
herbaceous layer [69]. (4) The plant roots of adult trees in the R+L+ subplots might exude
some secondary metabolites that inhibit seed germination and seedling growth [65–67]. In
the R+L− subplot of the control plot, all five determined plant variables were greater in
value than those in the R−L+ subplot, indicating that plant roots had stronger inhibition
ability than litterfall. We found more woody roots and less herbaceous roots in the control
R+L+ subplot than in the control R+L− subplot, indicating that most of the released organic
carbon and nutrients, from litterfall to mineral soil, were absorbed by the woody root
systems of adult trees. In the R+L+ and R−L− subplots of the control plot, thick and dry
forest litter buried plant seeds and obstructed them from reaching relative wet humus and
mineral soil during the dry season, resulting in most seeds being kept in the thick litter, and
less seedlings being present in the control subplots than in the corresponding treatments
in the watered plot. Meanwhile, some plant seeds that required a dark environment to
germinate could absorb enough water and germinate in the thick and wet litter, resulting
in different plant composition and richness between the control and watered plots. For
example, C. camphora and B. papyrifera were established in the L+ subplots, but do not
appear in the L− subplots.
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4.3. Impacts of Seasonal Drought on Plant Diversity and Seedling Growth in the Herbaceous Layer

In theory, from seed germination to a strong plant individual that is capable of sur-
viving seasonal drought, the individual requires suitable soil moisture, temperature, light
exposure, and soil nutrients to survive its juvenile period [70–72]. The reality is that many
seeds germinate and continually grow to be small seedlings during the wet season, but
most germinated seeds and small seedlings cannot survive the following dry season in most
subtropical and tropical seasonal forests. This phenomenon is especially apparent during
frequent seasonal drought in the context of global climate change [43,73,74]. Under these
circumstances, only plant species that are tolerant of alternate dry and wet seasons through
various growth strategies can survive continually and be the dominant species in their local
forest ecosystem [43,73,74]. In the R+L+ subplot of the watered plot, the five determined
variables of plant seedlings were statistically greater than those in the R+L+ subplot in the
control plot, demonstrating that less precipitation and lower soil moisture during the dry
season clearly inhibited plant diversity and seedling growth in the herbaceous layer. Many
seeds that were buried in thick forest litter could germinate and grow into small seedlings
at the beginning of the wet season, including S. wallichii, Q. franchetii, Q. acutissima, and
all grass species, but then withered away during the next dry season in the control plot.
Many herbaceous plants, and some seedlings of woody plants mentioned above, however,
could survive the next dry season in the watered plot. These study results are consistent
with previous studies [43,73,74]. In addition, in the R+L+ subplot of the control plot, a
small amount of Hypnum plumaeforme Wils. grew in the wet season and withered in the
dry season, while there were only two plant species (C. camphora and P. carnosa) in the
R+L+ subplot of the watered plot, with one individual for each. This is probably because
consistently wet litter can continuously decompose and release nutrients to support adult
tree species, and potentially certain seedlings in the herbaceous layer, on the ground surface
in the R+L+ subplot in the watered plot, and because adequate soil moisture and released
nutrients from forest litter can support adult tree species, and some bryophyte flora, only
during the wet season in the R+L+ subplot in the control plot.

4.4. Synergistic Effect of Plant Roots, Forest litter, and Seasonal Drought on Plant Diversity and
Seedling Growth in the Herbaceous Layer

Forest development and evolution, as well as forest structure and plant composition,
are usually regulated by various environmental factors, such as climate [25], geography [75],
soil types and nutrients [76], hydrology [77], wind [78], and fire [79]. In the Caribbean,
forest ecosystems are impacted by topography, soil types, dry and wet seasons, and fre-
quent hurricanes [80–83], while in North America, the main disturbances in various forest
ecosystems include droughts, fires, hurricanes, tornadoes, storms, snow avalanches, and
landslides [83–86]. In Europe, most terrestrial ecosystems are severely threatened by vari-
ous extreme climates in the context of global climate change [14,15,87]. In Yunnan province
of China, where this study was performed, most forest ecosystems experience various
extreme climate conditions and climate-driven risks resulting from intensive global cli-
mate change, such as warming, storms, tornadoes, fires, and extreme droughts [88–90].
Simultaneously, intensive global climate change impacts South Asian and Indian mon-
soons, resulting in the irregularity of annual dry and wet seasons [91–93]. The typical
characteristics of these changes include drier dry seasons and wetter wet seasons, abrupt
temperature rises, rainfall occurring unexpectedly and intensely, and droughts accom-
panied by an increased risk of severe wild fires [17,94–96]. These environmental factors
can negatively impact canopy-dominant woody species, as well as seed germination and
seedling growth in the herbaceous layer, thereby potentially affecting future forest struc-
ture [52–54]. In this study, the experimental results not only demonstrate that forest litter,
plant roots, and seasonal drought individually affect plant diversity and seedling growth
in the herbaceous layer but also that they inhibit plant diversity and seedling growth in the
subplots via their interactions. Interaction patterns between plant roots and forest litter
are not always consistent, which likely shows synergistic effects for the number of plant



Forests 2023, 14, 712 16 of 20

individuals, the maximum height of plant seedlings and dry biomass, and the additive
effects for species richness and the mean height of plant seedlings because plant roots and
forest litter play different roles in controlling various plant variables (i.e., different con-
trolled environmental factors contribute varying forces to various plant variables) [97–99].
However, the synergistic effects of the three independent variables of plant roots, forest
litter, and seasonal drought is the fact. Frequent and severe seasonal drought resulting from
global climate change creates dry environmental conditions in forests, which accumulate
thick forest litter (5–12 cm depth) that physically inhibits seed germination and seedling
growth, and prevents litter decomposition from releasing organic carbon and nutrients
to mineral soil. The limited soil nutrients are mostly absorbed by the stronger roots of
adult woody trees, resulting in low plant diversity and weak plant growth. This should
be one of the dominant mechanisms to regulate plant diversity and seedling growth in
the herbaceous layer of forests, because all three independent variables appeared in the
R+L− subplot of the control plot and totally inhibited seed germination and seedling
growth. Conversely, in the R−L− subplot of the watered plot, without the inhibition of the
three independent variables, all five dependent variables reached their highest levels. In
addition, manipulated irrigation in the subplots with forest litter increased leachates that
might inhibit seed germination and seedling growth. We investigated plant diversity and
seedling growth in the herbaceous layer in different treatments of plant roots and forest
litter in combination with seasonal drought. We did not extract litter nutrients and root
exudates to investigate their functions on seed germination and seedling growth, which
will be part of our next study.

5. Conclusions

The results of this study showed that plant roots, forest litter, and seasonal drought,
and their interactions, shape plant diversity, individual density, and understory demo-
graphics and performance in the herbaceous layer on the ground surface in a montane
subtropical moist evergreen broad-leaved forest of southwestern China. This supports
our original hypothesis. More importantly, the synergistic effects of the three independent
variables on the five dependent variables of plant seedlings were proven, indicating that the
environmental factors that regulate a forest’s structure and plant composition are complex
and unpredictable. The results of this study proved the following. Frequent and severe
seasonal drought reduces soil moisture and microbial biomass, deposits and accumulates
massive dry forest litter, and prevents forest litter decomposition and organic nutrients
release, resulting in the physical inhibition of seed germination from thick litter and intense
competition of soil moisture and nutrients among plant seedling, adult trees, and soil mi-
crobes. Adult trees with stronger root systems than seedlings absorb most of the soil water
and nutrients during seasonal drought, and most seedlings in the herbaceous layer wither
away because of water stress and nutrient starvation. This should be one of the dominant
mechanisms used to control plant diversity and seedling growth in the herbaceous layer
of forests.
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