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Tropical forests play a critical role in the global carbon (C) cycle.
These ecosystems maintain the highest rates of net primary
production (NPP) on Earth (Hengl et al., 2017), contain c. 30% of
terrestrial C stocks (Jobbagy & Jackson, 2000), and have some
of the largest stores of fine-root biomass globally (Jackson
et al., 1996), as well as higher fine-root production and turnover
rates compared with other biomes (Cusack et al., 2021). Tropical
forest responses to projected warming, altered rainfall regimes, and
elevated C dioxide (CO2) concentrations (IPCC, 2021) are likely
to be different from other ecosystems because of their unique
characteristics (Box 1), making targeted research and model
development important for understanding tropical forest–climate
feedbacks. There is now a critical mass of long-term global change
field experiments and modeling efforts in tropical forests, yet thus
far there has been little synthesis, cross-site comparison, or multi-
site standardized experimentation among tropical forests to help us
understand how these biomes are changing. An organized
INSPIRE session at the 108th Annual Meeting of the Ecological
Society of America set out to tackle just this. Speakers covered large-
scale tropical forest field experiments andmodeling efforts, with an
emphasis on changes in ecosystem biogeochemistry under
warming, drying, elevated atmospheric CO2, and changing
nutrient status. In this meeting report, we provide an overview of
the large-scale global change experiments presented and highlight
the main objectives and opportunities for tropical forest research
that emerged, including cross-site comparisons and integration
with ecosystem-scale models (Fig. 1).

Overview of large-scale global change experiments in
tropical forests

The range and extent of large-scale tropical forest experiments and
modeling efforts presented by the speakers highlighted the recent
accumulation of new data and papers. Across the presentations, the

importance of spatial and temporal variation in tropical forest
responses to global change and variation in responses by different
componentsof ecosystems(e.g. above-vsbelowground),wasapparent.

Talks on warming experiments included the Tropical Responses
to Altered Climate Experiment (TRACE) on canopy and soils in
Puerto Rico, and the Soil Warming Experiment in Lowland
Tropical Rainforest (SWELTR) in Panama. The Panama Rain-
forest Changes with Experimental Drying (PARCHED) experi-
ment (Tana Wood, Puerto Rico; Andrew Nottingham, Panama;
Lee Dietterich, Panama, respectively, Fig. 1) provided an example
of a drying experiment. Results illustrated that there are rapid and
often large changes in tropical forest C and nutrient cycling in
response to temperature and moisture shifts (Nottingham
et al., 2020; Reed et al., 2020; Dietterich et al., 2022; Cusack
et al., 2023), including shifts in organism growth, activity, and
diversity. Emerging results presented by Nottingham indicated
that alterations to biogeochemical cycling rates are related to shifts
in organism activity and biodiversity across trophic levels. There
was substantial spatial and temporal variation in responses within
and among forest sites, with shifts in C cycling, in particular,
varying over time and space among individual forests included in
PARCHED(Cusack et al., 2023), and interacting effectswith other
disturbances (e.g. hurricane and drought) in TRACE (Reed
et al., 2020). This group of talks emphasized the importance of
understanding tropical forest biogeochemical responses to both

Box 1 Unique ecosystem attributes of tropical forests.

Tropical forests have some unique ecosystem attributes, such that these
ecosystemsmerit focused studyandmodelingefforts tounderstand their
responses and feedbacks to global change. For example:

� In contrast to temperate and boreal ecosystems, tropical seasonality
tends to be driven by fluctuations in moisture rather than temperature.
� Soils in lowland tropical forests are most commonly scarce in rock-
derived nutrients such as phosphorus (P), rather than nitrogen (N) as is
most common at higher latitudes (Du et al., 2020). This gives rise to
different nutrient constraints over ecological responses to climate
change and atmospheric ‘CO2 fertilization’ (Hungate et al., 2003).
� Tropical forests have some of the highest alpha and beta tree species
diversity on Earth (Condit et al., 2002), which contributes to a broad
diversity of traits and strategies for overcoming resource scarcity.

At the same time, there are exceptions to this broader context, such as
monodominant Dipterocarpaceae forests in SE Asia, and relative N
scarcity in early successional and montane tropical forests. Still, tropical
forests are most often characterized by moisture seasonality, scarcity of
rock-derived nutrients, and high biodiversity. The extent of these
characteristics varies among tropical forests. Despite the global
importance of tropical forests in the global C cycle and their distinctive
ecosystemcharacteristics, theseecosystems remainpoorly characterized
and underrepresented in dynamic vegetation and Earth SystemModels
relative to other ecosystems (Bonan & Doney, 2018).
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warming and drying and highlighted the need to assess these effects
in combination, across more sites, and over decadal timescales.

Presentations on nutrient fertilization experiments in tropical
forests (Kelly Andersen, Brazil; Michelle Wong, Panama; Rebecca
Ostertag, Hawai’i, USA) also highlighted the complexity of plant,
soil, and microbial responses across time and space, and the
importance of baseline site conditions such as forest successional
stage, litter chemistry, and soil nutrient status. These presentations
added to a recent meta-analysis of 36 large-scale fertilization
experiments in lowland tropical forests, which indicated that
multi-nutrient (N and P) limitation to NPP is most common and
that earlier successional forests aremorenutrient-limited thanmature
tropical forests (Wright, 2019). Ostertag’s talk on the Hawai’i Long
Substrate Age Gradient (LSAG) showed data from multi-nutrient
(N, P) fertilization across stages of soil development, where NPP is
limited by N on young soils, and by P on older, more strongly
weathered soils (Vitousek, 2004).Ostertag’s talk focused on nutrient
effects on plant litter decomposition across plant species, showing
that both litter quality and site characteristics influenced decom-
position rates, and effects were strongest in the P-scarce older soil.

These results followed earlier results showing that fertilization with
the limiting nutrient had a larger effect on fine root production in the
P-scarce site compared with the N-scarce site (Ostertag, 2001).
Wong discussed results from a multi-nutrient fertilization across a
forest successional gradient in Panama (Fig. 1), where biological N
fixation is active in N-scarce, early successional sites, and declines in
older, more P-scare forests, suggesting N limitation to NPP in early
successional tropical forests (Batterman et al., 2013). Research
presentedbyAndersenonmulti-nutrient fertilization in theBrazilian
Amazon Fertilisation Experiment (AFEX, Fig. 1) demonstrated that
P addition alone increased NPP on P-scarce soils by increasing leaf
and fine root production and turnover rates (Cunha et al., 2022).
Together, these presentations illustrated that different nutrients or
combinations of nutrients limit different ecosystem processes across
tropical forests, which will likely lead to the emergence of complex
sets of nutrient limitations to biological activity under elevated
atmospheric CO2 (i.e., CO2 fertilization). A need emerged from
these talks for more synthetic efforts to identify plant and ecosystem
traits that will be important for overcoming or tolerating nutrient
scarcity in the context of global change.

Fig. 1 Iterative feedbacks betweenempirical andmodeling approaches are promoted to understand tropical forests and their responses to change. Large-scale
field experiments in the tropics as discussed at the ‘Tropical forests & global change: biogeochemical responses and opportunities for cross-sites comparisons’
INSPIRE session at the 108th Annual Meeting of the Ecological Society of America are shown. (a) Panama early successional forests, the site of a cross-
successional fertilization experiment (image: Michelle Wong). (b) the Panama Soil Warming Experiment in Lowland Tropical Rainforest (SWELTR), showing
Andrew Nottingham and field crew setting heating cables into soil (image: Geetha Iyer). (c) The Brazil Amazon Fertilisation Experiment (AFEX), showing
Laynara Lugli adding fertilizer (image: Kelly Andersen). (d) the PanamaRainforest Changeswith Experimental Drying (PARCHED)drying experiment, showing
Daniela Cusack and Lee Dietterich under a throughfall exclusion structure (image: Amanda L. Cordeiro). (e) the Puerto Rico Tropical Responses to Altered
Climate Experiment (TRACE) warming experiment, showing heating structures from above (image: Maxwell Farrington). Iterative feedback between field
projects (a–e)anddynamicsvegetationmodels, suchas theFunctionallyAssembledTerrestrial EcosystemSimulator (FATES)withC,NandPcycling represented
(f), are important to further understand how tropical forests respond to climate change (image: DOE Next Generation Ecosystem Experiments – Tropics).
Composite figure: D. Cinoglu.
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Presentations on improving the representation of tropical forests
in vegetation models (Matthew Craig, Oak Ridge National Lab;
Jennifer Holm, Lawrence Berkeley National Lab) highlighted the
importance of targeted data model integration for better tropical
forest representation of biogeochemical feedbacks. For example,
Holm discussed a mismatch between observed declines in the
tropical C sink (Rammig, 2020), compared with the continual
increase in tropical C sinks predicted by climate-driven vegetation
models (Arora et al., 2020). Specifically, most of the global models
used for climate projections and in the coupled model inter-
comparison project (CMIP6) predict a growing tropical C sink,
contrary to what plot-scale empirical data currently suggest, which
may be due to missing processes such as plant demography,
nutrient competition, and disturbances. Holm argued for applying
global models at the site scale to look at model-observation
agreement to better predict at larger scales. With the emerging
inclusion of finer-scale plant demography and competition into
biogeochemical Earth SystemModels (ESMs), such as inclusion of
the Functionally Assembled Terrestrial Ecosystem Simulator
(FATES, Fig. 1) model (Holm et al., 2020), we can now apply
lessons learned at the site level back to the global scale. Craig
highlighted ongoing efforts to address cross-scale integration in
dynamic vegetation demographic models (VDMs) including:
improving representation of nutrient cycling and C costs for
nutrient acquisition in tropical forests, and expanded representa-
tion of dynamic root responses to changing resources over soil
depths. Models at the ecosystem scale can also be useful for
predicting and understanding outcomes of forest management and
restoration strategies.

Forefronts in tropical forest global change research

Going forward, the discussion among speakers and audience
highlighted four main goals.
(1) Increasing inclusivity and diversity of participants in tropical
forest research should be a forefront of all efforts, with an
emphasis on building collaboration in-country at tropical
research sites (Haelewaters et al., 2021). Increased representation
should equitably include scientists within tropical countries, and
expand research into understudied regions of the tropics, such as
African forests. A common theme of this INSPIRE session and
the broader ESA 2023 meeting was ‘For All Ecologists’,
highlighting the need to consciously: (a) design research to
maximize the participation of local communities, (b) provide
incentives and agency for projects led by local peoples, (c)
recognize the value of local knowledge, ideas, and understanding
of ecosystems, (d) bolster local financial and educational
infrastructure, and (e) form lasting, mutually beneficial partner-
ships with local communities and organizations. A concrete step
in this direction could be taken with an open letter to US funding
agencies lobbying to be allowed to allocate grant funds directly to
local organizations as partners.
(2) More synthesis of results from existing and past tropical forest
global change experiments is needed. The group noted that some of
the ongoing nutrient and moisture manipulations in the tropics
have 20+ yr of data (Wright, 2019;Almeida et al., 2023), andnewer

temperature and moisture manipulations, such as TRACE,
SWELTR, PARCHED, and AFEX are approaching 5–10 yr of
data collection. Therefore, efforts are needed to synthesize these
data, assess what we have learned, and to inform next steps for the
study. An example has been provided by the recent synthesis of
NPP responses to fertilization experiments in tropical forests
(Wright, 2019). As part of ongoing synthesis efforts, attention
should be placed on the biogeographical context of each
experimental site (e.g. among-site variation in geology, rainfall
patterns, and plant communities).
(3) Planning the next broad-scale, coordinated experiments across
tropical forests is needed to address key questions. New experiments
should focus on data gaps and broader geographical representation
within the tropics. Several important research needs emerged from
the discussion:
(a) More cross-site comparisons and coordinated studies using
existing experiments. This effort could include greater assessment
of variation in response to global change among forests with
different levels of plant diversity, soil nutrient availability, climate,
and symbiotic associations (Fig. 1). For example, ectomycorrhizal
fungi (EMF)-dominated dipterocarp forests of Asia should be
compared more directly with parallel measurements in arbuscular
mycorrhizal fungi (AMF)-dominating forests in the Americas. The
speakers noted that the African tropics are poorly represented in
large-scale global change experiments, despite the fact that African
rainforests appear to be themajor netC sink among tropical regions
(Rammig, 2020). Attendees emphasized the need to improve
standardization of measurements, methods, and protocols among
sites to improve comparability.
(b) The participants identified a need to launch small-scale,
replicated, dispersed field experiments in multiple sites across tropical
regions using standardized methods, creating a broad network of
replicated research, which could be linked to existing networks
of forest plots (e.g. ForestGEO). Ideas within this theme included
(1) a dispersed network of small-scale rainfall exclusion experi-
ments, (2) distributed decomposition and root ingrowth experi-
ments across natural P gradients, and with attention to
characterizing and spanning a diversity of microbial communities,
and (3) distributed branch, leaf, and/or soil column warming using
heating cables.
(c) There was also a call for the development of multi-factorial
experiments in tropical forests, which could be added onto existing
experimental setups, such as multi-factor plots including warming,
drying, and/or fertilization. Unlike the smaller, dispersed experi-
ments in (b) above, thesewould be larger-scale additions of factorial
manipulation to existing field experiments, such as adding a
warming*drying*fertilization experiment to the nearby SWELTR,
PARCHED and fertilization experiments in Panama.
(d) Greater representation of disturbed and early successional
tropical forests within experimental research is needed. Several
participants identified the significance of secondary forests, not only
because of their large and growing footprint, but also because of
their potential to act as experiments for changing nutrient,
temperature, moisture, and light dynamics. Since medium to long
term biogeochemical responses of tropical forests to global change
are likely to be drivenby shifts in plant community composition and
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demography, rather than intraspecific plasticity or individual
adaptation (which is what is typically measured in manipulative
experiments), secondary forests offer a chance to study communities
that have assembled under ongoing environmental disturbance.
(4) Promoting iterative feedback between empirical andmodeling
approaches will be key for representing ecosystem processes in
models, testing hypotheses, and predicting change at large scales
(Holm et al., 2023). Experimental design and data collection using
model–field comparisons can ensure that empirical data are the
most useful for model integration. The need for modelers and
empiricists to work together throughout the lifetime of the research
(Fig. 1), rather than empiricists bringing inmodelers at the end,was
stressed by several in the audience.With potentially infinite choices
of experiments and manipulations that could be used moving
forward, Craig pointed out that using models at the inception of
new projects can guide which questions and hypotheses to
prioritize. An example of this approach is the new Free Air CO2

Experiment (FACE) in the Amazon, which was preceded by
modelingwork exploring the importance of representing P cycles in
tropical forest vegetation modeling studies (Fleischer et al., 2019).
Craig provided a reminder that models need equations: mathema-
tical representation of continuous, often nonlinear, relationships
between ecosystem processes and environmental drivers is most
useful for model implementation. Model sensitivity to different
parameters shed light on where data are most needed to improve
model equations or constants and can help identify needs for the
representation of additional processes in models. Audience
members also highlighted the need for ecosystem models to better
represent plant–microbe–soil interactions unique to tropical
forests (e.g. Dallstream et al., 2023) to better predict responses to
global change.
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