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resistance and resilience to tropical cyclones
Christopher J. Patrick1*, John S. Kominoski2, William H. McDowell3,4, Benjamin Branoff5, 
David Lagomasino6, Miguel Leon3, Enie Hensel1, Marc J. S. Hensel1, Bradley A. Strickland1, 
T. Mitchell Aide5, Anna Armitage7, Marconi Campos-Cerqueira8, Victoria M. Congdon9,10, 
Todd A. Crowl2, Donna J. Devlin11, Sarah Douglas9, Brad E. Erisman9, Rusty A. Feagin12, 
Simon J. Geist11, Nathan S. Hall13, Amber K. Hardison13, Michael R. Heithaus2, J. Aaron Hogan2, 
J. Derek Hogan11, Sean Kinard1, Jeremy J. Kiszka2, Teng-Chiu Lin14, Kaijun Lu9, 
Christopher J. Madden15, Paul A. Montagna16, Christine S. O'Connell17, C. Edward Proffitt11, 
Brandi Kiel Reese18, Joseph W. Reustle19, Kelly L. Robinson20, Scott A. Rush21, Rolando O. Santos2, 
Astrid Schnetzer22, Delbert L. Smee18, Rachel S. Smith23, Gregory Starr24, Beth A. Stauffer20, 
Lily M. Walker16, Carolyn A. Weaver25, Michael S. Wetz16, Elizabeth R. Whitman2,  
Sara S. Wilson2, Jianhong Xue9, Xiaoming Zou26

Tropical cyclones drive coastal ecosystem dynamics, and their frequency, intensity, and spatial distribution are pre-
dicted to shift with climate change. Patterns of resistance and resilience were synthesized for 4138 ecosystem time 
series from n = 26 storms occurring between 1985 and 2018 in the Northern Hemisphere to predict how coastal 
ecosystems will respond to future disturbance regimes. Data were grouped by ecosystems (fresh water, salt water, 
terrestrial, and wetland) and response categories (biogeochemistry, hydrography, mobile biota, sedentary fauna, 
and vascular plants). We observed a repeated pattern of trade-offs between resistance and resilience across analyses. 
These patterns are likely the outcomes of evolutionary adaptation, they conform to disturbance theories, and they 
indicate that consistent rules may govern ecosystem susceptibility to tropical cyclones.

INTRODUCTION
Tropical cyclones, including hurricanes and typhoons, are among 
the most powerful natural phenomena on Earth. Even weak storms 
can bring devastating rainfall and storm surges that cause cata-
strophic loss of life, damage property, and disrupt ecosystem ser-
vices (1). Predicting the socioecological effects of tropical cyclones 
is critically important as human coastal populations rise (2, 3), the 
spatial distribution of storms extends into higher latitudes (4), and 
the frequency and intensity of storms increase (5–7). However, vari-
ation among storms, the diversity of affected ecosystems and re-
sponses, and the necessarily opportunistic nature of most hurricane 
research (8, 9) have generated a plethora of seemingly unique case 
studies. Synthesis is needed to reveal common predictor and re-
sponse variables that are translatable across storms, systems, and 
processes to foster prediction of ecosystem susceptibility to future 
storms (9).

Several disturbance frameworks describe how system state (e.g., 
abiotic conditions and biota life history) and disturbance mecha-
nism (e.g., identity and intensity) drive the ecosystem responses 
(10, 11). These frameworks predict that naturally dynamic and fre-
quently disturbed ecosystems exhibit higher intrinsic resistance and/or 
resilience, whereas variation in intrinsic resistance and resilience 
among individual species is expected to be a function of traits in-
cluding generation time and mobility (8). Intrinsic resistance and 
resilience are dictated by different processes and need not be posi-
tively correlated with one another (12). For example, short genera-
tion time in a species is hypothesized to enhance intrinsic resilience 
through rapid population growth, but this trait does not necessarily 
enhance resistance (8). Concordantly, traits that confer resistance 
need not also enhance resilience. Although we may intuitively ex-
pect intrinsic resistance and resilience to be positively correlated with 
one another, empirical evidence from multiple case studies suggests 
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that the opposite may be true (13–17). This would imply that man-
agers seeking to simultaneously enhance both resistance and resilience 
in coastal ecosystems face an impossible task (18, 19), but there is a 
need to test these ideas with a large-scale data synthesis. While new 
data collection through coordinated global research networks is the 
ideal path forward (9), geospatial analyses and existing data allow us 
to immediately address this need (8).

Here, we provide a comprehensive synthesis of coastal ecosystem 
susceptibility to tropical cyclones rooted in disturbance theory. We 
describe coastal ecosystem susceptibility to tropical cyclone distur-
bance as a combination of intrinsic resistance, the degree to which 
an ecosystem can remain unchanged despite the presence of distur-
bance, and intrinsic resilience, the ability of an ecosystem to return 
to the reference state after a temporary disturbance (20). While these 
intrinsic ecosystem properties are unmeasurable latent variables (21), 
we can measure their indicators: observed resistance, the unit in-
crease in effect size per unit increase in the stressor (e.g., maximum 
wind speed or total rainfall), and observed resilience, the rate of change 
per unit time for ecosystem return to baseline conditions after dis-
turbance (see Materials and Methods for formulas). Scaling our ob-
served measures of resistance by stressor intensity and resilience by 
effect size differentiates them from the classic engineering definitions 
of resistance and resilience (22) and allows us to compare them across 
ecosystems and storms.

We assembled a dataset of 4138 ecosystem time series from 26 dif-
ferent storms primarily in the Atlantic basin affecting 118 study sites 
(Fig. 1) between 1985 and 2018. Using a disaggregation approach, 
we took each tropical cyclone event and divided it into multiple, 
translatable components including storm stressor attributes such as 
wind speed and total rainfall, ecosystem type such as coastal wetlands 
and open water, response variable categories including biogeochem-
ical and organismal responses, and aspects of the response such as 
observed resistance and resilience (11). We report repeated patterns 
in ecosystem responses to hurricanes, most notably a pattern of neg-
ative covariation, or trade-offs, between resistance and resilience 
among ecosystems and response variables. These consistent patterns 
across ecosystems and measured variables from such a large dataset 
can be treated as confirmed generalizations that support an empir-
ically validated general theory of tropical cyclone disturbance in 
coastal ecosystems.

RESULTS
Data distribution
We assembled monitoring data from before and after 26 tropical 
cyclones across 118 different study sites from 1985 to 2018. Using 
time series (n = 4138) classified into five variable categories—
biogeochemical, hydrographic, mobile biota, sedentary fauna, and 
vascular plants—we quantified the resistance and resilience to max-
imum estimated wind speed, ranging from 58 to 253 km/hour. and 
maximum estimated rainfall, ranging from near zero to 28 cm/day. 
(Fig. 1). Time series measurements included 151 unique response 
variables that were grouped into five variable categories: biogeochem-
ical, hydrographic, mobile biota, sedentary fauna, and vascular plants. 
The greatest proportion of time series data fell into the biogeochem-
ical (62%, n = 2561 series) and hydrographic (29%, n = 1217 series) 
categories, with the remaining data distributed among the mobile 
biota, sedentary fauna, and vascular flora. There were eight different 
ecosystems that were grouped into four ecosystem categories: fresh 

water (lotic and lentic; 6%, n = 233 series), salt water (estuaries and 
offshore; 88%, n = 3643 series), wetland (mangroves, salt marsh, 
and freshwater wetlands; 5%, n = 190 series), and terrestrial (forests 
and dunes; 2%, n = 72 series). The wide range of represented ecosys-
tems, response variables, and stressor intensity metrics allows us to 
characterize variation in observed resistance and resilience among 
ecosystems and response variables and quantify cross-ecosystem 
patterns in relationships among these variables.

Ecosystems, organisms, and processes all exhibit 
a resistance-resilience trade-off
We observed a negative relationship between observed resistance 
and resilience associated to both wind speed and rainfall among 
time series across the entire dataset (Fig. 2 and tables S1 and S2), 
suggesting that coastal ecosystem functions, flora, and fauna all ex-
hibit trade-offs in response to tropical cyclones. Simulation models 
demonstrated that the observed relationships are unlikely to have 
occurred by chance (see the Supplementary Materials). Observed 
resilience was more tightly correlated with observed resistance to 
wind speed than with observed resistance to rainfall. There was 
wide variation in the observed resistance to wind speed, observed 
resistance to rainfall, and observed resilience, and these responses 
differed among ecosystems and variable categories (Fig. 3 and table 
S3). However, we again observed patterns of negative covariation 
between resist ance and resilience. Terrestrial ecosystems had higher 
biogeochemical resistance than all other ecosystems to both wind 
and rain, but the lowest resilience (Fig. 3 and table S4). In contrast, 
freshwater ecosystems had the highest biogeochemical and hydro-
graphic resilience and lowest biogeochemical resistance to wind 
and rain among systems. Mobile biota in freshwater systems also 
had the highest resistance to rainfall among systems, followed by 
wetland and then saline ecosystems. Among variable categories with-
in ecosystems, mobile biota and biogeochemical responses tended 
to have the lower resistance to wind and rain but the higher mean 
resilience. In contrast, hydrographic variables tended to have higher 
resistance and lower resilience. Other variables showed more system- 
specific patterns. Vascular plants had low resilience and high resist-
ance to wind within wetlands, but not in saline systems. Sedentary 
fauna also showed no difference from other variables in saline sys-
tems, likely due to small sample size and high variation within 
that category.

We suspect that variation in the evolutionary history of species’ 
adaptation to disturbance exhibits scale-up behavior and regulates 
the susceptibility of populations, communities, and the ecosystem 
processes they drive. For individual species, there is selection to excel 
at either resistance or resilience, but rarely both simultaneously (23, 24). 
This has been observed in individual case studies, but not as a wide-
spread pattern among field observations spanning storms, systems, 
and organism types. For example, tree species in Jamaican forests 
following Hurricane Gilbert showed strong among-species covaria-
tion between damage exhibited (low resistance) and fast regrowth 
rates (high resilience) (15). Dominant trees tended more toward 
resistance, and those that exploit light gaps (disturbance specialists) 
tended more toward resilience (15). Certain sets of life history char-
acteristics such as long life, delayed sexual maturity, or low repro-
duction, and organism traits such as low adult mobility dictate a need 
for greater resistance to the disturbance events that are likely to be 
experienced within the organism’s lifetime, as we observed in seden-
tary and vascular plants.
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In contrast, the relatively low resistance but high resilience of mo-
bile biota in our synthesis supports the idea that there is less advan-
tage for resistance to cyclone effects in highly mobile species that 
have generation times substantially shorter than the local return 
interval of tropical cyclones. These species can rapidly recolonize 
and proliferate in the wake of disturbances that are infrequent rela-
tive to their life span, and strong selection would require substantial 
lasting changes to the gene pool as a consequence of the event (25). 
Mobile biota can be locally extirpated or emigrate in advance of the 
storm and then rapidly return or recolonize the affected habitats (26). 
A similar argument can be made for single-celled organisms with 

short generations such as phytoplankton and microbes (27), although 
they may be more likely to undergo rapid evolution in response to 
the event and/or via general mechanisms of dispersal (28). Areas 
of coastline or particular ecosystem types such as streams experi-
encing more frequent disturbances may be dominated by species 
that have evolved to be successful within that regime (29). Interme-
diate cases such as fast-growing weedy plants (low adult mobil-
ity, but high fecundity and short life span) or elasmobranchs (high 
adult mobility with low fecundity and delayed reproduction) may 
be phylogenetically constrained to evolve to maximize one strategy 
or the other (30).

Fig. 1. Map of sites with storm tracks and ecosystem types studied. Middle panel is all site (dots) and storm track (lines) except data from Taiwan. Bordering center 
panels are cumulative rainfall values (bottom, right) and max wind speed (left, top) by longitude and latitude.
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The concept of evolutionary trade-offs may also explain negative 
covariation between observed resistance and resilience in the phys-
ical and chemical variables that are controlled by biota. For exam-
ple, ecosystem efflux of carbon dioxide is driven by heterotrophic 
microbial activity (31), erosion rates are constrained by the stability 
of the plant roots stabilizing the soil (32), nutrient dynamics are 
influenced by microbial uptake rates (31), and watershed nutrient 
export is constrained by the uptake rates of vegetation on the land-
scape (31). Given the biological control over these variables, the ob-
served resistance of a physical or biogeochemical process should be 
at least partially explained by the observed resistance of the domi-
nant biota responsible for the process.

Furthermore, the observed resilience of a process dependent on 
biota is reliant on both the degree of functional redundancy among 
species supporting the process (33) and the variation in intrinsic re-
silience to disturbance among those species (34, 35). Compensatory 
dynamics could result in high observed resilience of a process if sec-
ondary taxa with high observed resistance and/or resilience are present 
and able to fill the missing role in the absence of the dominant taxa. 
However, in cases where the entire guild of taxa responsible for a 
process has low intrinsic resilience, the dependent process will exhibit 
low observed resilience. For example, following Hurricane Hugo 
(1989) in Puerto Rico, stream nitrate concentrations remained ele-
vated for years, likely due to the naturally long duration required for 
downed vegetation to completely break down and for relatively slow- 
growing tree communities to recover (36). In principle, the tighter the 
link between the measured ecosystem function and the biota, and 
the greater the similarity of intrinsic resilience among taxa driving 
the function, the more closely the function should adhere to the pat-
tern of a resistance-resilience trade-off. Together, the average ob-
served resistance and resilience of entire ecosystems should reflect 
the evolutionary forces on the resident biota, the dependence of 

requisite processes on the biota, and the degree of redundancy in the 
biological communities (35).

Responses that are completely or largely independent of control 
by biota should tend toward lower resistance, because the lack of 
biological regulation allows an efficient energy transfer between the 
force applied and the physical response. For example, a drop in estu-
arine water conductivity would be simply a function of the amount 
of storm-related freshwater inflow into the basin relative to the vol-
ume of the receiving estuary (37). The resilience of these variables 
must then be positively related to the potential energy of the new 
state. For example, estuaries vary in their water residence time as a 
function of mean daily watershed inflow, tidal range, and basin mor-
phology (38). Estuaries with higher residence time will thus take longer 
to return to baseline water conductance after massive storm-related 
freshwater inflow. This pattern was observed in estuaries affected 
by Hurricane Harvey, in which those with high residence times re-
turned to baseline within 7 months, while those estuaries with low 
residence time returned within a few weeks (14).

Storm characteristics affect ecosystem resistance 
and resilience
We observed overall positive relationships between measures of re-
sistance and the total rainfall, maximum rainfall, and maximum wind 
speed, the slope of which varied among response categories within 
ecosystems (Fig. 4 and tables S1 and S2) with clear splits between 
aquatic (saline and fresh water) and nonaquatic (wetland and ter-
restrial) habitats. In the aquatic systems, biogeochemical responses 
were enhanced with wind speed and reduced with rainfall. A similar 
pattern occurred with hydrographic variables, although freshwater 
responses were reduced to both wind and rain (Fig. 4 and table S2). 
Terrestrial systems showed an opposing pattern, with biogeochem-
ical responses enhanced with rainfall and reduced with wind speed 
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Fig. 2. Relationships between resistance to wind or rain and resilience among ecosystem and variable types. Ecosystem types, ecosystem processes, and flora and 
fauna all demonstrate negative covariation between resilience and (A) resistance to wind speed and (B) resistance to rainfall. Metrics are on a natural log scale and should 
be considered unitless for simple interpretation and viewed in relative terms from low to high. Each graph displays the stability summary metrics calculated from each 
time series labeled by ecosystem (color) and variable category (shape). Best fit lines shown include the relationships for each group-variable category combination in the 
varying slope and intercept model with line color indicating ecosystem type.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Florida H

ealth Science C
enter on M

arch 04, 2022



Patrick et al., Sci. Adv. 8, eabl9155 (2022)     2 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 10

(Fig. 4 and table S2). The amplified sensitivity of biogeochemical and 
hydrographic variables in aquatic systems to rainfall likely reflects the 
dependence of these responses, largely measured in the water column 
and inclusive of microbial and phytoplankton responses, to fresh-
water inflow and loads of particulate and dissolved materials carried 
into the ecosystem (39). In contrast, rainfall is less likely to have 
large effects on biogeochemical responses, primarily litter and leaf 
chemistry in this dataset, in terrestrial systems. Conversely, direct 
effects of wind on wave energy or water column stability are less likely 
to create lasting changes in aquatic systems, such as upwelling- 
induced phytoplankton blooms, to the water column constituents or 
microbial and algal communities beyond a few weeks (40), whereas 
wind-induced damage to terrestrial vegetation can cause lasting im-
pacts on uptake and biogeochemical cycles on the landscape (36).

Vascular plant response was enhanced in all cases in aquatic eco-
systems and reduced in all cases of terrestrial and wetland ecosystems 
(Table S2). This divergence is most likely explained by the buffering 
effects of water to rainfall and high winds on submersed aquatic 
vegetation. While high winds can be locally damaging, severe im-
pacts on these organisms is more strongly linked to sedimentation 
(41) and prolonged reduced water clarity following a storm (42, 43). 
These effects are more strongly dependent on factors like basin 
morphology and residence time and overall storm impacts as the 

watershed scale than the specific characteristics of the storm event 
directly over the submersed plants (14).

In the saline ecosystems, mobile biota, primarily fish, showed an 
increase in resistance as rainfall increased and a decrease in resistance 
with wind speed (Fig. 4 and table S2). The positive relationship be-
tween observed resistance of mobile biota and rainfall intensity could 
be a function of drops in barometric pressure that may serve as a 
warning for mobile biota to prepare for a storm by emigrating from 
the region or seeking shelter (44). For example, Strickland et al. (26) 
observed that juvenile bull sharks (Carcharhinus leucas), driven by 
barometric pressure cues, evacuated a South Florida estuary 24 hours 
before Hurricane Irma. Common snook (Centropomus undecimalis) 
in Florida rivers also exhibited similar behavior, moving downriver 
into deeper waters as Hurricane Irma approached (45). Freshwater 
systems did not show this same pattern, possibly because there is no 
similar downstream deep-water refuge habitat for obligate freshwater 
fish in the shallow coastal rivers that were included in the dataset. 
This explanation may also apply to mobile biota in wetlands, pri-
marily fiddler crabs and snails, and sedentary fauna in saline sys-
tems, primarily infaunal bivalves and invertebrates, which all have 
limited ability to seek refuge against freshwater inundation and sa-
linity changes because of high rainfall. The different spatial patterns 
of wind and rain within a storm offer one possible explanation for 
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Fig. 3. Comparison of resistance and resilience among variable categories within ecosystem types. Columns correspond to ecosystem type, rows correspond to 
response metric, and colors denote variable category. Violin plots show the distribution of data within each group, while inset box plots show the median, quartiles, and 
outliers (points). Bars over each plot indicate which variables are not significantly different from one another within ecosystems. Alphanumeric labels under each violin plot 
indicate which variable categories were significantly different among ecosystems (columns). Letter denotes variable category (e.g., b = biogeochemistry, h = hydrography, 
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Red text indicates that for the response variable (row) and the indicated variable category (letter), we observed significant differences among ecosystem types (table S4).
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why increasing wind velocity does not show a similar effect on mobile 
biota in saline systems (45, 46). Specifically, the highest winds are rel-
atively localized, and thus, there is high spatial variability in wind 
speed across the entire affected region. Topographic variation can 
create additional variation in local wind speed. While rainfall also 
has some spatial variability, watersheds remove some of that vari-
ability by integrating rainfall across the entire basin before the storm 
flows affect downstream ecosystems.

In contrast to observed resistance, observed resilience demon-
strated no relationship with stressor (i.e., wind speed and rainfall) 
intensity (table S1). The lack of a relationship suggests that resilience, 
or recovery rate, within the range and types of effects included in 
these analyses is independent of stressor magnitude. This result in-
dicates that while a larger perturbation to an ecosystem may require 
a longer recovery period than a smaller perturbation, the actual rate 
of recovery would be similar in both cases. We interpret this to mean 
that the limits on recovery rates are primarily dictated by intrinsic 
resilience and ecosystem conditions that are independent of pertur-
bation magnitude such as the available food or nutrient resources 
during the recovery. However, stressor-invariant resilience may not 
always be the case. For example, a very severe disturbance that com-
pletely extirpates a taxon from a region would result in a slower rate 
of recovery (e.g., low resilience) if there are time lags until the species 
recolonizes from another source population, if there is displacement 
by a new opportunistic species, or if the habitat has changed (47).

DISCUSSION
Gaps and directions in global hurricane research and coastal 
ecosystem management
Our data assembly efforts were largely focused on North America. 
A broader geographic scope, including both the Southern Hemisphere 
and the Pacific basin, would enhance future efforts. We also observed 
biases in the types of data gathered in the synthesis. Estuarine and 
offshore ecosystems were exceptionally well represented, and coastal 
terrestrial ecosystems had the poorest representation. Although our 
dataset was not exhaustive, the relative abundances of data types in-
dicate that a general research bias toward coastal marine ecosystems 
may be pervasive and, thus, limit the scope of our interpretations. 
There were also biases in the types of response variables in our data-
set, with poorest representation in animals, plants, and ecosystem 
processes such as decomposition rates, plant growth, or nutrient 
cycling. Because of data limitations, we were also unable to differ-
entiate microbial populations (including phytoplankton) as distinct 
from the biogeochemical processes they control. Our study high-
lights the need for more studies of the effects of tropical storms on 
other parts of the coastal plain (e.g., streams, forests, and freshwater 
marshes) and more research on diverse organisms spanning the do-
mains of life and ecosystem processes.

Beyond gathering additional data, our synthesis raises sever-
al important research questions that are critical for understanding 
the factors that drive ecosystem susceptibility to tropical cyclone 
disturbances.
What sets of species traits best explain patterns of resistance 
and resilience at the population-level?
For instance, generation time, reproductive potential, time until ma-
turity, dispersal mode, dispersal distance, and physiological toler-
ance limits at different life stages could be quantified and placed 
into an analysis. A trait-based approach to responses of biota could 
yield advances in our mechanistic understanding and our ability to 
predict population-level effects of a stormier future.
How do past disturbance regimes of a region influence the 
response of ecosystems to subsequent disturbances?
In other words, are coastal ecosystems that have a long history of 
frequent hurricane effects more resistant to future storms, or does 
frequent disturbance generate ecosystems with low resistance but 
high resilience to disturbance? Are these relationships linear, or are 
there tipping points? Disturbance operates in both a metacommunity 
context, filtering out species lacking the requisite traits for long-
term survival, and in an evolutionary context, driving populations 
in high disturbance regions to exhibit population-level differences 
from congeners in less frequently disturbed regions. Our synthesis 
data could be further classified in terms of disturbance regime (fre-
quency and magnitude of prior events) to explore patterns. Field 
experiments using genetic tools and common garden experiments 
could further test these ideas in a more mechanistic fashion (48). 
These questions are particularly important for forecasting the effects 
of the increased frequency of hurricanes in higher latitudes predicted 
with climate change.
How do antecedent environmental conditions immediately before 
a tropical cyclone influence its impact?
Ecosystems are inherently dynamic, changing throughout the year 
and between years in accordance with seasons, demographic cycles, 
weather conditions, and climatic oscillations (e.g., El Niño Southern 
Oscillation, North Pacific Oscillation). Do these factors interact with 
storm characteristics to dictate the impact of a tropical cyclone? For 
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Fig. 4. Relationship between storm metrics (total rainfall, max rainfall, and max 
wind speed) and resistance among ecosystems within each variable category. 
Points display the conditional random effect (x axis) of each storm metric (shape) on 
each variable category (row) in each ecosystem (color) from the respective mixed 
effects models for each storm metric. Error bars are the conditional standard devi-
ations of the random effect.
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example, is a storm more damaging in a drought year or an excep-
tionally wet year? Is the impact of early season storms comparable to 
late season storms? To illustrate, Hurricane Agnes was an exceptional 
rainfall event that wiped out the majority of submersed aquatic veg-
etation in the Chesapeake Bay in 1972 but is thought to have been 
particularly disruptive because it arrived in June before seed set had 
occurred for the majority of the aquatic plant species (49). Informa-
tion about antecedent conditions and timing could be incorporated 
into future analyses to quantitatively evaluate the influence of recent 
weather and timing on ecosystem sensitivity.
How applicable are these concepts to understanding the 
stability of coupled human-natural coastal ecosystems in the 
face of tropical cyclones?
The resistance and resilience of natural ecosystems must depend, in 
part, on the local-scale effects of humans on those ecosystems. Sim-
ilarly, the sensitivity of the natural ecosystems may influence the sen-
sitivity of both human infrastructures by moderating effects such as 
flooding and storm surges and human economic activity dependent 
on ecotourism and natural resource harvesting. Incorporating metrics 
of anthropogenic system sensitivity to tropical storms and quantify-
ing the effect of anthropogenic activities on the resistance and resil-
ience of coupled natural ecosystems should enhance our ability to 
understand these complex system dynamics. Furthermore, these in-
vestigations will enhance our ability to understand the relative bal-
ance of local-scale anthropogenic stressors and global stressors (e.g., 
climate change) on resistance and resilience among ecosystems, geo-
graphic localities, and response variables and help target effects to 
enhance coastal resilience or resistance (50).

Although much remains to be learned, our synthesized data show 
consistent patterns of trade-offs in ecosystem sensitivity to tropical 
cyclones among coastal ecosystems, which may extend more broadly 
to applied ecology such as management responses to wildfires and 
ecological disturbance theory. Our findings emphasize that managing 
for increased strength in one axis (e.g., resistance or resilience) may 
result in decreases in the other, an importance consideration for coastal 
management. For example, in the Chesapeake Bay, seagrass meadows 
dominated by fast-growing widgeon grass (Ruppia maritima) have 
higher resilience but lower resistance to water quality declines than 
meadows dominated by eelgrass (Zostera marina) (51). This trade-
off is an important consideration that must be evaluated when mak-
ing coastal management decisions such as choosing which species of 
seagrass to restore. In areas with infrequent disturbance, resistance 
may be better to manage for, whereas resilience may be preferable in 
areas experiencing frequent perturbations.

These results enhance our cross-ecosystem understanding, high-
light new questions, and suggest that an empirically validated gen-
eral theory of controls on ecosystem susceptibility to tropical storms 
is achievable. Our synthesis only represents a fraction of published 
and unpublished data on ecosystem responses to tropical cyclones, 
and there remains much to learn from historical data. Continuing 
to build on this approach by learning from the past will enhance our 
ability to predict the effects of tropical cyclones on coastal ecosystems 
in the future.

MATERIALS AND METHODS
Meta-analysis
A multidisciplinary group of participants in the Ecosystem Responses 
to Hurricanes Synthesis Meeting held in Corpus Christi, Texas, in 

April of 2019 assembled the dataset. The meeting included 52 par-
ticipants representing a diverse range of expertise, geographic regions 
of the United States and Taiwan, demographics, and career stages, 
who all had time series data on ecosystem responses to hurricanes to 
contribute to the synthesis. Participants submitted their own data, 
identified and contacted collaborators and colleagues with additional 
data, and helped identify publicly available data sources that could 
be included in the dataset.

Each submitted datum was required to come from a time series 
of observations of a single response variable (e.g., dissolved oxygen, 
species abundance, and salinity) taken repeatedly in a fixed location 
before and after an individual storm event. The frequency of obser-
vation (e.g., 15-min, daily, and monthly intervals) had to be high 
enough to reasonably capture the temporal pattern, as determined 
by best professional judgment of the investigator who collected and 
submitted the data. A single, decades-long time series might be 
broken into multiple data points, each observation representing a dif-
ferent storm event that occurred during the overall series. Likewise, 
a given storm event typically had multiple data points representing 
different spatial locations where data were collected and different 
response variables were measured at each location. For each datum, 
we recorded the name of the response variable, definition of the re-
sponse variable, units of the response variable, latitude, longitude, 
storm name, date of the event, mean prestorm value, value of the 
greatest change caused by the storm, and time in days until observa-
tions returned to typical values for that site at that time of year. In ad-
dition to covariate and site information, we also created meta-data 
to describe the source of the data and the funders to aid future re-
searchers accessing this dataset. We converted measurements of the 
same response variable to a common set of units among entries.

To understand how storm characteristics affected different coastal 
ecosystems, processes, and their components, we grouped all data by 
ecosystem type and response variable type. Ecosystem types included 
wetlands, fresh water, salt water, and terrestrial. We defined wetlands 
as systems dominated by hydrophilic plants living in hydric soils and 
included plants influenced by fresh water and salt water such as grass- 
dominated marshes and mangroves. We defined freshwater ecosys-
tems as coastal rivers and streams. We defined saltwater ecosystems 
as estuarine and marine ecosystems. We defined terrestrial ecosys-
tems to include coastal forests as well as several minor habitats such 
as coastal dune vegetation. We classified response variables into 
five categories: biogeochemical, hydrographic, vascular plants, sed-
entary fauna, and mobile biota. We defined biogeochemical vari-
ables as stocks and fluxes of dissolved constituents such as nutrients 
and trace elements, as well as photosynthetic prokaryotic and eu-
karyotic microbes that influence the cycling of those materials. The 
decision to combine geochemical stocks and fluxes (i.e., nutrients) 
with biotic drivers of those processes (i.e., phytoplankton biomass 
and microbial populations) was, in part, driven by an overrepresen-
tation of bulk phytoplankton biomass (as chlorophyll-a) in the as-
sembled dataset and limited data on abundances of distinct species 
or groups of microbes. We recognize that this approach limits our 
ability to resolve the complex interrelationships between these fac-
tors and believe these limitations represent important research gaps 
for future microbially focused efforts. We defined hydrographic vari-
ables as measurable properties of waters such as salinity and turbid-
ity that are influenced by both physical and biogeochemical drivers. 
We divided measures of the abundance, biomass, and diversity among 
the mobile biota, animals able to actively disperse during their adult 
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life stage, sedentary fauna, animals with limited or no mobility during 
adult life stages, and vascular plants.

Storm characteristics
To describe how tropical cyclone characteristics affect coastal resil-
ience and resistance, we chose two key aspects of storm disturbance 
known to affect population, community, and ecosystem dynamics: 
wind and rainfall.
Maximum wind speed
As most weather stations are damaged before hurricane force winds 
are registered, we relied on the relationship between wind speed and 
distance from the storm center to estimate wind speeds at all loca-
tions. We built this relationship from surface wind field data from 
the U.S. National Hurricane Center (www.nhc.noaa.gov/gis), which 
provide the maximum extent of sustained wind speeds at thresholds 
of 35, 50, and 64 knots. We used all available wind fields to model 
the relationship between wind speed and distance from the storm’s 
center, with different models constructed for all categories of the 
Saffir-Simpson cyclone wind scale. Then, using the IBTrACS data-
set of all tropical cyclone tracks (52), we used the distance of each 
storm to a study site location to estimate the maximum sustained 
wind speeds at each of the roughly 1-hour interval locations. Also, 
from the IBTrACS dataset, we constructed separate models relating 
a storm’s sustained winds to maximum wind gusts, and this relation-
ship was used to estimate maximum wind gusts at each location. 
Analyses were performed in the statistical program R (53) using sf() 
library (54).
Maximum and total rainfall
To ensure a uniform coverage, precision, and accuracy of rainfall data 
for each storm and location, we estimated rainfall metrics from mul-
tiple remote sensing–derived datasets. Datasets included the Climate 
Hazards Group InfraRed Precipitation with Station data (CHIRPS) 
dataset and Precipitation Estimation from Remotely Sensed In-
formation using Artificial Neural Networks-Climate Data Record 
(PERSIANN-CDR). From each rainfall dataset and unique location/
storm combination, we extracted rainfall data for a 4-day period 
temporally centered on the time when the storm’s center track came 
closest to the location. At each location, we created a 1000-m radi-
al buffer (2000-m diameter) around the center point, and grid cell 
values for average precipitation, maximum precipitation, and tem-
perature from the various datasets (e.g., PERSIANN and CHIRPS) 
for the identified dates were extracted and averaged using the loca-
tion buffer. We defined the hurricane event as 2 days before to 2 days 
after the storm “event” date. We then calculated rainfall within the 
24-hour period of the storm passing, the highest daily estimate of 
rainfall, and total rainfall, the sum of cumulative rainfall over the 
time period. Estimates of each storm metric from each data source 
were then averaged for each site/storm combination. Analyses were 
performed using Google Earth Engine (55).

Analyses
For each time series of ecosystem responses to tropical cyclones, we 
calculated metrics indicative of observed resistance and resilience 
that were modified from Pimm (22) to normalize for the variation 
in effect size and stressor magnitude as well as to create intuitive axes 
(22). We calculated observed resistance as the ability for an ecosystem 
response variable to withstand change, as the change in effect size per 
unit increases the stressor (e.g., wind speed). Effect size is normal-
ized maximum amplitude of the response, calculated as the natural 

log response ratio (LRR) of the absolute observed change relative to 
the baseline value

   LRR = ln (      (  max (  ∣( r  t−n   −  _  r  t    ) ∣) +  _  r  t   )   ─────────────────  _  r  t      )     

where   _  r  t     is the average prestorm value of the response variable, and 
rt−n are poststorm observations taken up until the return to base-
line. We calculated Observed Resistance by taking the natural log of 
the ratio of LRR to the measured value of the stressor (i.e., wind 
speed and total rainfall) and multiplying by negative one to flip the 
axis for ease of interpretability

   Observed Resistance = − 1 * ln (     LRR ─ str   )     

where str is the stressor. We performed this calculation for each 
measurement of wind speed (maximum gust) and rainfall (total rain-
fall, rainfall within 24-hour period) and averaged resistance values 
across measurements within stressor classes.

To estimate Observed Resilience, the rate at which ecosystem re-
sponse variables returned to baseline (i.e., rate of return), we calculated 
the natural log of the ratio of percent absolute change of each eco-
system response variable divided by the time to return to baseline

   Observed Resilience = ln 
(

     
 (     (  max (  ∣( r  t−n   −  _  r  t    ) ∣) +  _  r  t   )  ________________  _  r  t      )  

  ────────────── d   
)

     

where d is the number of days until return to baseline.
Given that the formulas for observed resistance and resilience 

have a common numerator and one is multiplied by negative one, 
these metrics are biased to be negatively related to one another. How-
ever, before statistical quantification of the relationship between ob-
served resistance and resilience, we evaluated this bias using simulated 
data and determined that relationships in our data are unlikely to have 
been produced by chance and can be quantified and interpreted using 
standard statistical approaches (Supplementary Materials).

To quantify the relationship between resistance and resilience, for 
each resistance metric (one per storm metric), we fit an exponential 
decay linear mixed effects model using maximum likelihood with 
the natural log of resistance as our response, resilience as a fixed ef-
fect, and variable category within ecosystem type as a random slope 
and intercept effect to account for differences between variable types 
and ecosystems.

To understand variation in metrics of ecosystem susceptibility 
among systems and variable response categories, we ran a one-way 
analysis of variance (ANOVA) with type III error distributions to 
account for unequal sample sizes followed by a Tukey–post hoc test 
for each combination of stability metrics (n = 3) among variable cat-
egories for each system type (n = 4) and among systems for each vari-
able type present in multiple systems (n = 4). ANOVA models were 
evaluated with a Dunn-Šidák adjusted  value of 0.0064 to control 
for family-wise error rate. This sequential approach was used instead 
of two-way ANOVA because of combinations of variable types. To 
evaluate the effect of stressor intensity on resistance and resilience, 
we ran a series of mixed effects models (n = 6) with each sensitivity 
metric (i.e., resistance to wind, resistance to rain, and resilience) 
treated as the response, and a paired storm intensity metric treated 
as a fixed effect, with variable category within ecosystem type as a 
random intercept effect to account for variation in the way groups 

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversity of Florida H

ealth Science C
enter on M

arch 04, 2022

http://www.nhc.noaa.gov/gis


Patrick et al., Sci. Adv. 8, eabl9155 (2022)     2 March 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

9 of 10

among ecosystems respond to stressor intensity. Interpretations were 
restricted to coefficients fit to specific variable/system combinations. 
We fit three models with resilience as the response, one for each of 
the storm metrics (i.e., wind speed, total rain, and maximum rain). 
Models with resistance as the response variable included one where 
resistance to wind was paired with maximum wind speed, and two 
with resistance to rain as the response and either total rain or max-
imum rain as the predictor. We split the models in this fashion to 
aid in interpretability of results.

We performed all analyses using the statistical program R ver-
sion 4.0.3 (53). We fit mixed effects models using the lme4 package 
(56) and reported results from conditional F tests with Satterthwaite 
degrees of freedom using lmerTest package for fixed effects (57). To 
assess model assumptions, we evaluated randomized quantile resid-
uals using the DHARMa library and found no violations (58). We 
calculated variance explained using the r.squaredGLMM function in 
the MuMIn library and reported as marginal R2, variance explained 
by fixed effects only, and conditional R2 values, variance explained 
by whole models (59).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl9155
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