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Abstract
Aim: Tropical cyclones are large-scale disturbances that can shape the structure and dy-
namics of mangrove forests. Although tropical cyclone activity overlaps extensively with 
the latitudinal distribution of mangrove forests, the relationships between cyclone intensity 
and frequency and mangrove forest canopy damage and recovery are not understood at 
the global scale. Using remote sensing data, we examined how mangrove forest structure, 
climate and cyclone characteristics influence canopy cover loss and recovery dynamics.
Location: Global tropics.
Time period: 2000–2020.
Major taxa studied: Mangrove trees.
Methods: Using two satellite-derived vegetation indices (the enhanced vegetation 
index and the normalized difference infrared index) from 86 cyclones affecting 56 
mangrove sites across the globe, we quantified mangrove canopy loss in relationship 
to cyclones. Using linear regression and variance decomposition, we identified and 
ranked significant predictors of cyclone-induced canopy loss and recovery.
Results: Three-quarters of the studied cyclone disturbances resulted in canopy dam-
age. Stands exposed to high wind speeds and those close to the cyclone paths were 
more severely damaged, whereas lower damage magnitudes were found in sites with 
greater past cyclone frequency. Canopy damage was greater in tall mangrove stands 
but decreased with higher aboveground biomass. The distance from the cyclone path 
and maximum wind speed were the most important factors, representing > 50% of 
the explained variation in cyclone damage. There was considerable variation in can-
opy damage among cyclones, but rates of recovery were similar across all mangrove 
sites, with the main predictor of recovery time being the degree of canopy loss.
Main conclusions: Our results suggest that the resistance of mangrove canopy cover 
to cyclone disturbance is variably tuned to the cyclone regime and vegetation char-
acteristics, but resilience is inherent to the magnitude of canopy damage because the 
rate of forest canopy recovery appears to be consistent globally.
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1  | INTRODUC TION

Globally, mangrove forests are facing many threats, including tim-
ber harvest (Din et al., 2008), sea-level rise (Lovelock et al., 2015) 
and shifts in rainfall, temperature and disturbance drivers because 
of climate change (Alongi,  2015). Among these threats, climate 
change-induced changes in tropical cyclone disturbance regimes 
are unique because of the global distribution of mangrove forests, 
which largely overlaps with the extent of tropical cyclone activ-
ity (Figure  1). Mangrove forests are situated at the terrestrial–
marine ecotone and are therefore particularly prone to the high 
winds, heavy rains and storm surge of cyclones. The projected 
increase in the frequency of the most intense cyclones (Kossin 
et al., 2020), coupled with their projected coastal migration (Wang 
& Toumi, 2021), is likely to alter significantly and, potentially, to ac-
celerate mangrove forest dynamics in the coming decades. Studies 
on the response and recovery of mangrove forests experiencing 
cyclones of different frequencies and intensities at the global scale 
are rare (but see Simard et al., 2019a), but they have potential to 
help us to understand how changing cyclonic storm regimes will 
affect mangrove forests.

The strong winds, heavy rains and large tidal surges of cy-
clones can disturb mangroves directly by damaging trees and mod-
ifying the environment (Krauss & Osland,  2020), often more so 
than for terrestrial forests. Through defoliation, branch breaking 
and tree windthrow (Doyle et  al.,  1995; Smith et  al.,  1994), cy-
clones influence forest structure (i.e., tree height and stem size 
distributions) and cause canopy dwarfing (Lin et  al.,  2020) be-
cause taller, more exposed trees are removed disproportionally 
by cyclones (Doyle et al., 1995; Smith et al., 1994). Furthermore, 

disturbance-driven environmental changes, such as soil deposition 
(Castañeda-Moya et al., 2020), erosion, hydrological changes and 
increasing temperature because of canopy loss, stress mangroves 
(Doyle et  al.,  1995; Radabaugh et  al.,  2020). For example, man-
grove dieback across the Everglades landscape of coastal South 
Florida in relationship to Hurricane Irma was attributable to storm 
surge water ponding and hydrological isolation and not directly 
to wind (Lagomasino et  al.,  2021). Cyclones also influence man-
grove ecosystem carbon cycling via effects on forest primary pro-
ductivity, litterfall and necromass generation (Adame et al., 2013; 
Castañeda-Moya et  al.,  2013). Given that cyclone disturbance 
events cause canopy damage, which leads to lower canopy CO2 
assimilation rates (Barr et al., 2012), thorough studies of mangrove 
forest canopy loss and recovery dynamics are important for un-
derstanding and modelling the carbon balance in cyclone-affected 
landscapes where mangrove forests represent large carbon stocks 
(Cameron et al., 2021).

Variation in disturbance frequency might explain regional differ-
ences in mangrove forest structure and dynamics (Rovai et al., 2016; 
Simard et al., 2019a). For instance, the tallest mangroves in the world 
are found in areas unaffected by cyclones (e.g., the Gabon Estuary 
and other cyclone-free equatorial regions; Simard et  al.,  2019a), 
probably because they lack the canopy-dwarfing effects of cyclones 
(Lin et al., 2020). On the contrary, mangroves are short on Yap is-
land, Micronesia because of frequent cyclones (Allen et al., 2000). 
Moreover, a remote sensing-based study of the 2017 hurricane 
season in the Caribbean identified recent hurricane history as a 
significant factor explaining variation in forest normalized differ-
ence vegetation index (NDVI) response (i.e., resilience) to cyclone 
disturbance (Taillie et  al.,  2020). Forests repeatedly exposed to 

F I G U R E  1   Cyclone tracks, locations (grey dots) of studied mangrove forests (n = 56) and global mangrove distribution. Cyclone tracks 
are colour coded by storm intensity for all storms of at least category 1 on the Saffir–Simpson scale since 1980 based on the International 
Best Track Archive for Climate Stewardship (IBTrACS) archive (Knapp et al., 2010, 2018). Mangrove distribution, shown in green, is based 
on the Global Distribution of Mangroves dataset (Giri et al., 2011). The Supporting Information (Table S1) gives further information about 
each studied mangrove forest. Detailed maps of each studied mangrove forest in relationship to cyclone paths are shown in the Supporting 
Information (Figures S1‒S6)
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high winds have high resistance to disturbance because the grad-
ual removal of taller and therefore more exposed trees or branches 
leads to short and homogeneous canopies that are more resistant 
to wind forces (Krauss & Osland, 2020; Lin et al., 2020; Roth, 1992). 
Although Simard et al.  (2019a) have examined the relationship be-
tween mangrove structure and cyclone frequency, no assessments 
on the effects of the frequency or strength of cyclones on mangrove 
forest canopy cover dynamics have been carried out at the global 
scale. This hinders our understanding of mangrove forest resilience, 
or the ability of mangroves to sustain disturbance and recover to 
the pre-disturbance structural state (Holling, 1973), in relationship 
to cyclones, a key driver of disturbance that is projected to increase 
in importance with climate change.

Owing to the global variation in the frequency of cyclones, a se-
lection of sites from all cyclone basins allows one to test whether 
mangrove forests in sites with more frequent cyclones are less af-
fected by, and recover more rapidly from, cyclone disturbance. Such 
a global scope would also include mangrove forests with very dif-
ferent forest structures and climate characteristics and therefore 
allow for evaluation of how forest structure and climate influence 
the response of mangrove forests to cyclone disturbances. Using 
vegetation indices (VIs) derived from time series satellite images of 
mangrove forests from across the world, we questioned:

1.	 What is the role and relative importance of variables related to 
cyclone, vegetation and climatic characteristics on the variation 
of cyclone damage?

2.	 How does cyclone frequency relate to cyclone-induced changes 
in mangrove forest canopy cover?

3.	 Do more frequently disturbed mangroves recover to their pre-
cyclone VI values more rapidly than less frequently disturbed 
ones?

4.	 Is mangrove forest structure [i.e., aboveground biomass (AGB) 
and canopy height] related to cyclone-induced variation of VIs 
and their post-cyclone recovery?

2  | MATERIAL S AND METHODS

2.1 | Site and cyclone selection

Our site selection was based on four criteria: (1) a close distance 
(< 100 km) to at least one major cyclone; (2) available cloud-free 
remote sensing imagery; (3) minimal anthropogenic influence; 
and (4) being representative of the relative frequency of cyclones 
among the six cyclone basins. We defined major cyclone events as 
storms of at least category 3 (wind speeds > 178 km/h; Simpson 
& Riehl,  1981) between 2000 and 2020, using the International 
Best Track Archive for Climate Stewardship (IBTrACS) archive 
(Knapp et al., 2010, 2018). Storms of at least category 3 typically 
result in significant and more noticeable forest damage (Kauffman 
& Cole,  2010) and litterfall than category 1 and 2 cyclones (Lin 
et  al.,  2003). Additionally, the number of cyclones of at least 

category  3 is projected to increase in the coming decades as cli-
mate change intensifies (Kossin et al., 2020).

To minimize the confounding effects of anthropogenic distur-
bances, most sites (43 of 56) were selected within nature reserves, 
although this classification was limited by the data available in 
the World Database of Protected Areas (UNEP-WCMC, 2020). 
Given that mangrove forest fragments are more likely to experi-
ence anthropogenic pressures that might confound or modulate 
the effects of cyclones (Branoff,  2017), the 13 other sites were 
selected because they represented unfragmented patches (i.e., 
pixels grouped together rather than separated by non-vegetated 
gaps) within the Global Distribution of Mangroves dataset (based 
on visual inspection; Giri et  al.,  2011). Globally, although many 
mangroves were within 100 km of major cyclones, site selection 
was largely limited by the availability of cloud-free pre- and post-
cyclone satellite images and by the Scan Line Corrector failure of 
Landsat 7. By selecting unfragmented sites with unknown levels 
of protection, we increased the number of events and improved 
the representation of events from basins of lower cyclone activ-
ity (e.g., the southern and northern Indian Ocean basins). Based 
on the above considerations, we selected 56 mangrove forest 
sites across all cyclone basins (Figure 1; Supporting Information 
Table S1). Although the 56 mangrove forests were selected based 
on the occurrence of at least one cyclone of at least category 3, 
once a site was selected we studied the effects of all cyclones of 
at least category  1 on the Saffir–Simpson scale (i.e., those with 
wind speeds > 119 km/h) on VI if pre- and post-cyclone cloud-free 
images were available. As a result, a total of 64 cyclones affecting 
the 56 sites were analysed, with 12 cyclones affecting more than 
one site and therefore being analysed for multiple sites. Thus, if 
the effect of one cyclone on one site is considered as a single 
disturbance event, the dataset includes 86 events. Site locations 
(Figure  1), storm meteorological details (Supporting Information 
Table S1) and the paths of selected cyclones are detailed in the 
Supporting Information (Figures S1‒S6).

2.2 | Remotely sensed data processing

Scenes (i.e., imagery) derived from 30-m spatial resolution Landsat 
Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+) 
and Operational Land Imager (OLI) sensors, processed to sur-
face reflectance and then to VIs, were downloaded from the 
USGS EarthExplorer website (earth​explo​rer.usgs.gov; as listed in 
Supporting Information Table S2). We removed surfaces obscured 
by clouds and cloud shadows within each scene using the pixel qual-
ity assessment band that is provided with each scene by the USGS. 
No topographic correction was applied because mangrove environ-
ments have relatively flat topography.

We used the enhanced vegetation index (EVI; Huete et al., 2002) 
and the normalized difference infrared index (NDII; Hardisky 
et al., 1983) to follow the extent of mangrove vegetation cover. The 
EVI, a VI based on blue, red and near-infrared (NIR) wavelengths, is 

http://earthexplorer.usgs.gov
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more sensitive overall to variation in canopy reflectance at high lev-
els of vegetation biomass than the commonly used normalized dif-
ference vegetation index (Huete et al., 1997). The NDII is based on 
the NIR and short-wave infrared (SWIR) bands and is highly sensitive 
to leaf chlorophyll and water content (Cheng et al., 2006). Both indi-
ces have been shown to be good remotely sensed metrics of changes 
in forest canopy cover and canopy leaf physiology associated with 
cyclones, including mangroves, although they are limited by their 
sensitivity to light canopy damage (Peereman et  al.,  2020; Zhang 
et  al.,  2016). Moreover, the SWIR band and the NDII have been 
used successfully to follow mangrove recovery (Gang et al., 2020; 
Peneva-Reed et al., 2020). We calculated cyclone-induced absolute 
change in a VI (ΔVIabsolute), or the difference between pre-cyclone 
and post-cyclone VI values, and the relative VI change (ΔVIrelative), or 
the ratio of absolute change to the pre-cyclone value, represented 
as a percentage.

All scenes were acquired within 1–2  months before and after 
cyclone passage, which minimizes the effect of early recovery and 
leaf turnover (Pastor-Guzman et al., 2018). We also acquired images 
preceding and following each cyclone event for ≤ 9 years to assess 
mangrove recovery. We assumed that a site had recovered when 
its VI was not different from the VI measured before disturbance 
(≤ 2 years before, accounting for inter-annual variability in the ab-
sence of other cyclones). Therefore, when data were available, we 
added annual scenes until we could detect VI recovery. For each 
site, we compared scenes that were acquired during the same sea-
son to reduce the effect of phenological change in the forest can-
opy across years. The dates of images across years were at most a 
few weeks apart.

2.3 | Data on forest stands structure and climate

For each of the 56 mangrove sites, two measures of forest structure, 
AGB (in megagrams per hectare) and forest canopy height (mean maxi-
mum height, in metres), were acquired from the dataset for the year 
2000 provided by Simard et al. (2019b) for world-wide mangroves with 
a 30 m spatial resolution. The area of each study site was delimited 
with one shapefile by combining the Landsat pixel quality assessment 
bands and two world-wide mangrove distribution datasets: the Global 
Distribution of Mangroves and the Global Mangrove Watch data 
(GMW) from 1996 to 2016 (Bunting et al., 2018). The GMW helped 
to select mangrove surfaces that did not show land-use change be-
tween 1996 and 2016. To describe stand growth conditions, we ex-
tracted four climatic parameters from the WorldClim 2 dataset (Fick & 
Hijmans, 2017): mean annual temperature (in degrees Celsius), annual 
temperature range (monthly maximum–monthly minimum), total an-
nual precipitation (in millimetres) and precipitation seasonality (i.e., the 
coefficient of variation of the annual precipitation). Pixel values were 
extracted from each image using R v.3.6.1 (R Core Team, 2019) and the 
“raster” package (Hijmans,  2019). For each site, only pixels common 
across all scenes used were analysed (i.e., never occulted by clouds or 
their shadows).

2.4 | Detection of change and correlations of 
cyclone parameters, forest structure and environment

Within each site, VI values were compared between all dates be-
tween 2000 and 2020 using the procedure described by Herberich 
et al. (2010) to detect the direction of VI change after cyclone pas-
sage and to monitor recovery dynamics across the following years. 
This procedure compares groups in the absence of a normal distribu-
tion and with heterogeneous variances, using the R packages “mul-
ticomp” and “sandwich” (Hothorn et al., 2008; Zeileis et al., 2020). 
The resulting 95% confidence intervals (95% CI) were used to 
assess whether cyclones led to a significant reduction in VI 
(i.e., VIpost- cyclone  <  VIpre-cyclone, hereafter referred to as “damage”) 
and when vegetation recovery occurred (i.e., when VIpost-cyclone n year ≥ 
VIpre-cyclone  year). If the 95% CI of the mean difference between pre-
cyclone and post-cyclone values encompasses zero, there is no signifi-
cant difference between the pre- and post-cyclone VIs.

Spearman’s correlation (ρ) was used to test whether the two VIs 
captured similar patterns of vegetation reduction for all sites and 
across all disturbance events. We also used Spearman’s ρ to examine 
the relationships between wind speed and cyclone frequency and 
between mean AGB, mean maximum canopy height and cyclone 
frequency.

2.5 | Model selection

2.5.1 | Cyclone-induced change in relationship to 
forest, cyclone and climatic variables

All cyclone events from 2000 to 2020 were included when carrying 
out linear model selection, but ΔVIs were set to zero for cyclones 
that did not cause a decline in VIs. This was done because cyclones 
are unlikely to cause immediate positive change in VIs, meaning that 
the negative ΔVI values were unrelated to cyclones. Exploration of 
the methodological causes of VI increase is beyond the scope of this 
study. By setting the negative ΔVIs to zero, damaging cyclones were 
represented by ΔVI > 0 and other events by zero. We standardized 
all independent variables (i.e., centred them on a mean of zero and 
scaled them to a standard deviation of one) and computed variance 
inflation factors (VIFs) to detect significant collinearities within sets 
of predictors. Predictors with a VIF ≥ 5 were excluded iteratively, 
starting with the predictor with the highest VIF, until no VIF re-
mained above this threshold.

We modelled absolute and relative ΔVIs using standardized ex-
planatory variables related to cyclone characteristics, forest struc-
tural properties and climate variables as predictors in ordinary 
least-squared multiple regression models. We ran stepwise back-
ward model selection based on the Akaike information criterion 
(AIC) to select the best-fitting linear regression models. In addition 
to AIC, we report the difference in AIC along stepwise model se-
lection (ΔAIC), Akaike weights (wi) and the VIF scores of selected 
predictors. Moreover, we ranked explanatory variables using the 
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Lindeman, Merenda and Gold (LMG) method for variance decom-
position from the “relaimpo” package (Grömping,  2006; Lindeman 
et al., 1980). The LMG values quantify the proportion of variance ex-
plained by each predictor in the multiple linear regression and range 
from zero to r2 (i.e., LMG values can be interpreted as r2 values for 
individual predictor variables), with the sum of LMG values equal to 
the model r2.

Cyclone intensity and distance variables were derived from the 
IBTrACS database. Cyclone intensity was represented in the linear 
models using data of maximum sustained wind speed, defined in the 
IBTrACS database as the maximum value of the 10-min average wind 
speed within a 100 km range of the site centroid (in kilometres per 
hour; Knapp et al., 2018). Cyclone distance was represented in the 
linear models as the shortest distance between the cyclone path and 
the centroid of the site (in kilometres). Lastly, cyclone frequency was 
included in the linear models, as the number of named cyclones (i.e., 
at least category 1) that passed within 100 km of the site centroid 
between 1980 and 2020.

Variables related to vegetation cover and structural properties 
included pre-cyclone mean EVI or NDII, AGB and mean maximum 
canopy height (see section 2.3) because pre-disturbance forest struc-
ture and composition and total biomass are important factors in de-
termining the magnitude of disturbance effects (Gough et al., 2021; 
Hogan et al., 2018; Kosugi et al., 2016; Lin et al., 2020). Although 
AGB and canopy height are likely to be correlated, we included both 
as predictors in the linear models. Canopy height is closely related 
to wind exposure, whereas AGB reflects forest structural attributes, 
such as average stem diameter at breast height (d.b.h.), and forest 
successional status, including tree densities, which also affect the 
vulnerability of mangroves to cyclone disturbance. Lastly, we in-
cluded the four climatic variables described earlier (see section 2.3), 
mean annual temperature, annual temperature range, total precip-
itation and precipitation seasonality as predictors in the linear re-
gression model selection.

2.5.2 | Analysis of mangrove forest canopy recovery 
from cyclone disturbance

Mangrove forest canopy recovery was studied for cyclones that 
caused a significant reduction in EVI or NDII in the month after the 
cyclone and if at least one image per year (at the same season) was 
available to monitor VI recovery (44 events). The time until canopy 
recovery (in years) was estimated by comparing VI measurements 1 
or 2 years before cyclone passage and VI measured in the years after 
the cyclone. Given the slight but significant inter-annual variation 
in EVI and NDII (even without cyclone events), a mangrove stand 
was considered to have recovered if the VI value was greater than 
or equal to its pre-cyclone value. To account for small variation in 
VI values across years unrelated to cyclone disturbance, we consid-
ered that a mangrove stand had recovered if its VI value was greater 
than or equal to the value observed before the cyclone or within 
2 years before if there were no other cyclones during that period. 

Incomplete VI recoveries by 2020 were not included in the analy-
sis. The time to recovery between the two VIs was assessed with 
Spearman’s ρ.

As in Section 2.5.1, we used stepwise backward model selection 
to select the best-fitting linear models that explained variation in the 
time to recovery of EVI and NDII. We included multiple standardized 
explanatory variables with VIFs < 5 in the model selection. First, we 
chose parameters describing the pre-disturbance state of the man-
groves (pre-cyclone VI) and VI reduction (absolute and relative ΔVIs 
as proxies for damage severity) because severe damage can slow 
down recovery by limiting lateral canopy growth or propagule avail-
ability (Ferwerda et al., 2007; Radabaugh et al., 2020). In addition, 
immediate post-cyclone VI was included because it describes the 
post-disturbance state of the mangrove from which recovery begins. 
The following predictors that were used in our model selection for 
predicting VI reduction were also included in the model selection for 
VI recovery: mean maximum tree height, mean AGB, cyclone wind 
speed and frequency, in addition to the four climatic variables listed 
earlier.

3  | RESULTS

3.1 | Cyclone characteristics and induced changes 
in VI

We observed the effects of 13 category 1, seven category 2, 20 cat-
egory 3, 25 category 4 and 21 category 5 cyclones from 2000 to 
2020 on mangrove canopy-related VI values. Cyclone paths varied 
in their distance to selected mangrove forest sites, ranging from 2 to 
99 km. The number of cyclones of at least category 1 affecting each 
site since 1980 varied from one (several sites) to 39 (Shimajiri forest 
in Japan, site 22). Sites that experienced the greatest frequency of 
cyclones were all located in the Northwest Pacific basin (Supporting 
Information Table S1). Interestingly, there was no significant correla-
tion between cyclone frequency and the maximum sustained wind 
speed (ρ = −.17, p = .11, n = 86).

Cyclone disturbance induced a decrease in either EVI or NDII 
for 68 of 86 events and for 52 of the 56 studied sites (95% CIs are 
given in Supporting Information Table S3). Moreover, 47 events led 
to a significant decrease in both EVI and NDII. The most severe 
mangrove canopy damage was observed in Atlantic Mexico after 
Hurricane Isidore (category 3, site 51), which resulted in a reduction 
in absolute EVI of 0.36 (which is a 72% reduction for relative EVI) and 
a reduction of 0.51 in absolute NDII. Additionally, Cyclone Monica 
(a category  5 storm), which passed over Junction Bay in Australia 
(site  5), led to the most drastic relative reduction in NDII (121%; 
Supporting Information Table S3), probably because the soil was ex-
posed and dry. Although the two ΔVIs disagreed on the occurrence 
of cyclone-induced vegetation loss for 18 cyclones (Supporting 
Information Table S3), their correlation was strong across all distur-
bance events (mean absolute and relative ΔEVI and ΔNDII, ρ = .80 
and .80, p < .01, n = 86; Supporting Information Figure S7), showing 



6  |     PEEREMAN et al.

that they generally tracked similar changes in mangrove canopy 
cover properties.

3.2 | Relationships between ΔVIs and cyclone 
characteristics

The linear models indicated that distance and maximum wind speed 
significantly explained variation in absolute and relative ΔEVI and 
ΔNDII, whereas cyclone frequency was significant only for ΔEVI 
(Table 1 and Figure 2). Cyclone wind speed and distance contributed 
to more than half of the model-explained variance of ΔVIs according 
to the LMG method (28%–45% for distance and 24%–32% for wind 
speed; Figure 3), whereas the contribution of cyclone frequency was 
more moderate (11%–14%). The stepwise model selection progres-
sion and accompanying statistics for each model are summarized in 
the Supporting Information (Tables S4 and S5).

The magnitude of canopy damage, as measured by the change 
in VI values, increased significantly with increasing maximum 
sustained wind speed (ΔEVIabsolute, β  =  0.03  ±  0.01; ΔEVIrelative, 
β  =  5.98  ±  1.67; ΔNDIIabsolute, β  =  0.04  ±  0.01; ΔNDIIrelative, 
β  =  8.39  ±  2.50). Conversely, the magnitude of canopy damage 
decreased with increasing cyclone distance for both ΔEVI and 
ΔNDII (ΔEVIabsolute, β = −0.03 ± 0.01; ΔEVIrelative, β = −7.25 ± 1.62; 
ΔNDIIabsolute, β  =  −0.05  ±  0.01; ΔNDIIrelative, β  =  −10.70  ±  2.45). 
Changes of EVI were slightly smaller in sites with greater histori-
cal cyclone frequency (ΔEVIabsolute, β  =  −0.02  ±  0.01; ΔEVIabsolute, 
β = −3.97 ± 1.84; Table 1). In contrast, the ΔNDII-based models did 
not identify a significant relationship between damage severity and 
cyclone history (p > .05).

3.3 | Effect of biological and climatic characteristics 
on cyclone-induced vegetation changes

Pre-cyclone VIs contributed 2%–11% to the linear model fits 
(Figure 3). Mean AGB contributed 13%–20% to linear model fits, and 
mean maximum height contributed between 2% and 6%. The annual 
temperature range was the least important contributor of the linear 
model-explained variance for ΔEVIabsolute (3.70% of the model r2) 
and was not included in the best-fitting model for ΔNDII.

Mean maximum canopy height had a significant correlation with 
AGB (ρ = .60, p < .01, n = 56), but neither maximum canopy height nor 
AGB was significantly correlated with cyclone frequency (p-values > 
.05, n = 56). Based on the coefficients from the linear models, stands 
with higher pre-cyclone EVI suffered more severe canopy dam-
age (ΔEVIabsolute, β = 0.03 ± 0.01 and ΔEVIrelative, β = 4.07 ± 1.85; 
Table 1). On the contrary, stands with higher pre-cyclone NDII were 
less severely damaged (ΔNDIIrelative, β  =  −5.55  ±  2.36). Although 
there was less damage to mangrove canopies with higher mean 
AGB (ΔEVIabsolute, β = −0.04 ± 0.01; ΔEVIrelative, β = −9.85 ± 2.48; 
ΔNDIIabsolute, β = −0.05 ± 0.02; ΔNDIIrelative, β = −9.63 ± 3.73; Table 1), 
damage increased for taller canopies (ΔEVIabsolute, β = 0.03 ± 0.01; 

ΔEVIrelative, β = 5.81 ± 2.36; ΔNDIIabsolute, β = 0.03 ± 0.02). Among 
the selected predictors, mean AGB and mean maximum height had 
the greatest VIFs, but the values were below five, a key threshold 
for the measure of multicollinearity among variables (VIF ≤ 2.61; 
Supporting Information Table  S4). Finally, annual temperature 
range was the only climatic variable selected, with wider tempera-
ture ranges being associated with greater reductions in ΔEVIabsolute 
(β = 0.01 ± 0.01).

3.4 | Recovery of mangrove canopy vegetation after 
cyclone disturbance

The time to recovery of the two VIs (EVI and NDII) was strongly 
correlated (ρ  =  .75, p < .01, n  =  22). Vegetation indices generally 
recovered within a few years, although there was considerable varia-
tion among and within study sites (Supporting Information Table S3). 
Rapid recovery, within 1 year for both VIs, was observed in multi-
ple sites, such as in Australian mangroves (site 7) following Cyclone 
Christine (category 3) and in the Shimajiri Mangrove Forest of Japan 
(site 22) following Typhoon Lekima (category 4). Much slower recov-
ery, which maximized at 9 years, was observed in a mangrove forest 
of Atlantic Mexico (site 51) following Hurricane Isidore (category 3), 
whereas complete recovery by 2020 could not be observed for 
seven studied cyclone events, with recovery times ranging from 2+ 
to 9+ years (Supporting Information Table S3).

Unlike cyclone-induced vegetation damage, cyclone characteris-
tics (wind speed and distance) and vegetation characteristics (AGB 
or mean canopy height) did not help to explain the observed varia-
tion in canopy recovery times. These variables dropped out during 
model selection (Supporting Information Tables S4 and S5). The re-
covery time of EVI was significantly greater for sites with greater 
relative reduction in EVI (β = 1.62 ± 0.36, 73% contribution of r2; 
Table 2). Likewise, NDII recovery time was significantly longer for 
mangroves that experienced greater cyclone-induced declines in 
NDII (β = 1.38 ± 0.25).

4  | DISCUSSION

4.1 | Cyclone damage to mangrove canopies 
depends on storm characteristics, forest structure 
and climate

The distance between the cyclone path and mangrove forests has 
long been understood to be a major factor influencing the magni-
tude of damage in single-region studies (e.g., Barr et al., 2012; Doyle 
et al., 1995). Direct cyclone passage (i.e., forest in the landfall site) 
causes severe damage to forest canopies (Zhang et al., 2019), and the 
severity of forest damage decreases with increasing distance from 
the path of the cyclone eye (Doyle et al., 1995; Smith et al., 1994). In 
accordance with single-region studies, we found that, at the global 
scale, closer cyclones induced greater canopy loss (i.e., vegetation 
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index reduction; Table 1). Moreover, we report that distance was the 
most important factor explaining the variation of cyclone-induced 
canopy damage (Figure 3), probably because a shorter distance to 
the cyclone path implies higher wind speed and a longer exposure 
time of the mangrove forest canopy to the winds of the cyclone. 
A site-based study from the Fushan Experimental Forest of north-
ern Taiwan, which experiences roughly one cyclone of at least cat-
egory 3 every 2 years, also found that cyclone proximity is the chief 
factor determining remotely sensed cyclone-induced canopy loss of 
tropical broadleaf forest (Peereman et al., 2020). Given that the ef-
fects of cyclones are likely to be consistent across much of the zone 
of cyclone influence (Ibanez et al., 2018), distance is likely to be the 
principal factor in modulating cyclone effects on forests across mul-
tiple scales, from the local to global scale.

Wind speed is another main factor in determining the severity 
of cyclone damage. Positive relationships between damage sever-
ity and cyclone wind speed have been reported for mangroves in 
the Caribbean and Gulf of Mexico region (Imbert,  2018; Taillie 
et  al.,  2020). Our results indicate that the positive relationship 
between the magnitude of damage and wind speed holds globally. 
The positive relationship between wind speed and the damage 
severity indicates that, even among major cyclones, greater wind 
speed still results in greater mangrove canopy loss. However, we 
detected little to no damage caused by cyclones of up to cate-
gory 2, which might be the product of the limited sensitivity of 
the VIs to slight canopy damage or might reflect a wind speed 
threshold for leaf loss in mangroves (Zhang et al., 2016). The pro-
jected increases in the intensity of cyclones and the frequency 

TA B L E  1   Multiple linear regression coefficients [mean (SE)] and t-statistics with associated probabilities (p) for changes of absolute 
(ΔVIabsolute) and relative (ΔVIrelative) values of the enhanced vegetation index (EVI) and normalized difference infrared index (NDII) following 
cyclone disturbance

Predictor

ΔVIabsolute ΔVIrelative

Coefficient (SE) t p-value
Partial 
r2 Coefficient (SE) t p-value

Partial 
r2

EVI

Intercept 0.07 (0.01) 11.91 *** – 17.89 (1.52) 11.74 *** –

Wind speed 0.03 (0.01) 3.74 *** .15 5.98 (1.67) 3.59 *** .14

Distance −0.03 (0.01) −4.80 *** .23 −7.25 (1.62) −4.47 *** .20

EVIpre-cyclone 0.03 (0.01) 4.35 *** .20 4.07 (1.85) 2.20 * .06

Mean AGB −0.04 (0.01) −4.11 *** .18 −9.85 (2.48) −3.98 *** .17

Frequency −0.02 (0.01) −2.35 * .07 −3.97 (1.84) −2.16 * .06

Mean maximum 
height

0.03 (0.01) 2.64 * .08 5.81 (2.36) 2.46 * .07

Annual temperature 
range

0.01 (0.01) 2.14 * .06 2.68 (1.57) 1.71 .04

Summary statistics n = 86; df = 78; F = 13.61; p < .01; AIC = −485.5461; 
mult. r2 = .5499; adj. r2 = .5095

n = 86; df = 78; F = 12.16; p < .01; AIC = 463.1602; 
mult. r2 = .5219; adj. r2 = .4789

NDII

Intercept 0.10 (0.01) 9.87 *** – 22.87 (2.30) 9.93 *** –

Distance −0.05 (0.01) −4.51 *** .20 −10.70 (2.45) −4.37 *** .19

Wind speed 0.04 (0.01) 3.34 ** .12 8.39 (2.50) 3.36 ** .12

Frequency −0.02 (0.01) −1.51 .03 −4.09 (2.55) −1.60 .03

Mean AGB −0.05 (0.02) −2.70 ** .08 −9.63 (3.73) −2.58 * .08

NDIIpre-cyclone −5.55 (2.36) −2.35 * .07

Mean maximum 
height

0.03 (0.02) 2.08 * .05 6.84 (3.53) 1.94 .05

Summary statistics n = 86; df = 80; F = 13.51; p < .01; AIC = −394.9849; 
mult. r2 = .4578; adj. r2 = .4239

n = 86; df = 79; F = 13.28; p < .01; AIC = 533.2275; 
mult. r2 = .5021; adj. r2 = .4643

Note: Multiple r2 (mult. r2), adjusted r2 (adj. r2) and the Akaike information criterion (AIC) are indicated for each model. Detailed model selections and 
variance inflation factor (VIF) scores are shown in the Supporting Information (Tables S4 and S5). The Supporting Information (Table S6) describes 
multiple linear regression results based on untransformed ΔVIs.
Abbreviation: AGB, aboveground biomass.
*p < .05; **p < .01; ***p < .001.
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of the most intense cyclones (Kossin et  al.,  2020) are therefore 
likely to cause greater vegetation loss in mangrove forests than 
has been observed previously. Moreover, with the projected 
poleward shift in the latitudinal distribution of cyclones and 
their migration closer to coastlines (Altman et  al.,  2018; Wang 
& Toumi, 2021), it is likely that in the coming decades, mangrove 
areas of Australia, India and South-eastern Africa, which have not 
experienced cyclone disturbances historically, might experience 
them. Such changes potentially have major implications for the 
global carbon cycle, including reduced uptake and sequestration, 
because mangrove forests play a disproportionate role in these 
processes (Barr et al., 2012).

A remote sensing-based study of hurricane disturbances in the 
Caribbean indicated that the recent history of category 1 and 2 
hurricanes significantly explained the variation in damage across 
mangrove forests (Taillie et  al.,  2020). Mangroves that had been 
disturbed recently by hurricanes also displayed less damage after 

the eventful 2017 hurricane season, although the analysis by Taillie 
et  al.  (2020) included few major cyclone events, which limits the 
interpretation of this finding. Being based on a large number of cy-
clones spread across all cyclone basins, our study clearly shows a 
positive relationship between cyclone frequency and the resistance 
of mangrove canopy loss to cyclone disturbance at the global scale. 
Smaller reductions in EVI for mangroves experiencing more fre-
quent cyclones indicate that mangrove canopies in sites subjected 
to more frequent cyclones are less vulnerable (i.e., more resistant) 
to cyclone disturbances (Table 1). Although we cannot discern the 
type of canopy damage incurred from cyclone events based on the 
vegetation index values analysed, most detected damage was prob-
ably caused by the physical forces of cyclone disturbance (i.e., wind, 
rainfall and waves) rather than by secondary environmental changes 
(e.g., change in salinity, warming) associated with the cyclones, 
given that the post-disturbance Landsat scenes are obtained within 
1  month after disturbance. It is likely that slight canopy damage, 

F I G U R E  2   The absolute and relative change of (a,b) enhanced vegetation index (EVI) and (c,d) normalized difference infrared index 
(NDII) in relationship to the minimum distance between cyclone path and site centroid, cyclone maximum sustained wind speed and cyclone 
frequency (n = 86)



     |  9PEEREMAN et al.

such as minor defoliation, might have occurred at most sites, be-
cause increased leaf litterfall is commonly reported in mangroves 
following cyclones (Doyle et al., 1995; Roth, 1992), which increases 
canopy resistance to high winds by decreasing wind drag (Lin 
et al., 2020). Severe damage (e.g., large branch fall, bole snapping 

and tree fall) might have taken place mainly in stands less often dis-
turbed by cyclones because they experienced greater drops in EVI, a 
metric related to canopy biomass (Huete et al., 1997). Low cyclone-
induced tree mortality in ecosystems experiencing frequent cyclone 
disturbance has been reported in northern Taiwan, in which multiple 

F I G U R E  3   The contribution of predictors to multiple linear regression models of the absolute (ΔVIabsolute; grey) and relative (ΔVIrelative; 
white) changes in (a) enhanced vegetation index (EVI) and (b) normalized difference infrared index (ΔNDII) caused by cyclones. The 
Lindeman, Meranda and Gold (LMG) scores are calculated through variance decomposition. The LMG scores indicate the portion of the 
multiple r2 of the model that is explained by each predictor; hence, predictors with larger LMG values have a greater contribution to model 
fits. In (b), predictors without an LMG score were not included in the final linear models after model selection (Table 1). AGB = aboveground 
biomass; VI = vegetation index

Predictor Coefficient (SE) t p-value
Partial 
r2 LMG

EVI recovery

Intercept 1.38 (0.36) 3.79 *** – –

EVIpre-cyclone 0.56 (0.32) 1.73 .11 .02

ΔEVIrelative 1.62 (0.36) 4.47 *** .44 .37

Mean AGB –0.60 (0.41) –1.46 .08 .01

Annual precipitation 0.46 (0.27) 1.71 .10 .03

Precipitation 
seasonality

0.61 (0.31) 1.98 .14 .08

Summary statistics n = 31; df = 25; F = 5.215; p < .01; AIC = 29.54878; mult. r2 = .5105; 
adj. r2 = .4126

NDII recovery

Intercept 1.76 (0.25) 6.89 ***

ΔNDIIabsolute 1.38 (0.25) 5.61 *** .50 .49

Summary statistics n = 34; df = 32; F = 31.51; p < .01; AIC = 22.35097; mult. r2 = .4961; 
adj. r2 = .480

Note: Multiple r2 (mult. r2), adjusted r2 (adj. r2) and the Akaike information criterion (AIC) are 
indicated for each model. The contribution of each predictor is obtained with the Lindeman, 
Merenda and Gold (LMG) variance decomposition method: r2 is partitioned among predictors; 
hence, the sum of LMG equals the model r2, and larger LMG statistics have greater explanatory 
power.
***p < .001.

TA B L E  2   Linear regression models, 
with means (SE) of coefficients and their 
t-statistics for the time to recovery of 
enhanced vegetation index (EVI) and 
the normalized difference infrared index 
(NDII) following cyclone passages in 
relationship to variables selected through 
model selection based on the Akaike 
information criterion
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category  3 typhoons in a season caused <  2% tree mortality (Lin 
et al., 2011). This is in stark contrast to the severity of damage ob-
served in sites experiencing lower cyclone frequencies. Indeed, in 
the Luquillo Experimental Forest of Puerto Rico, 9% of the trees 
were uprooted and 11% bole-snapped after category 3 Hurricane 
Hugo (1989), whereas the category 3 1938 hurricane caused 25%–
75% tree mortality for 70% of forests of the north-eastern USA (Lin 
et al., 2011; Mabry et al., 1998).

The mechanisms leading to the high resistance of frequently 
disturbed mangroves could be explained by more compact canopy 
structures in areas with frequent cyclones. Wind disturbances trim 
the upper canopy and prevent individual trees from emerging from 
the forest canopy (Chi et al., 2015; Doyle et al., 1995; Roth, 1992; 
Smith et  al.,  1994). Hence, regular cyclones lead to shorter for-
ests with less vertical canopy surface exposed to wind gusts (Lin 
et al., 2011, 2020). Shorter forests have higher resistance to canopy 
loss from cyclones, as indicated by our models (decreasing magni-
tude of damage for shorter canopy; Table 1) and in several studies 
(Doyle et al., 1995; Hall et al., 2020; Smith et al., 1994), although the 
relationship might not be universal in tropical forests (de Gouvenain 
& Silander,  2003). Indeed, the relationship between cyclone fre-
quency and forest structure appears to be complex (de Gouvenain 
& Silander, 2003). Unlike the results of Simard et al. (2019a), we did 
not detect a significant relationship between cyclone frequency 
and maximum canopy height. However, another possibility for the 
lack of a significant relationship in our study is that we used a much 
smaller dataset than study by Simard et al. (2019a), which spanned 
the entire geographical distribution of mangrove forests, whereas 
ours was limited to mangrove areas affected by cyclone distur-
bance. Thus, the increasing frequency of intense cyclones (Kossin 
et al., 2020) might lead to overall shorter mangrove canopies glob-
ally, in areas currently affected and those that might be affected in 
the near future (Altman et al., 2018; Doyle & Girod, 1997; Wang & 
Toumi, 2021).

Forest structural attributes other than canopy height modulate 
the susceptibility of forest stands to cyclone-induced canopy dam-
age. Following Hurricane Katrina, Wang and Xu (2009) reported re-
duced damage in forests with greater vegetation cover and stand 
density, both of which contribute to higher AGB. Moreover, Rovai 
et  al.  (2021) indicated that cyclone frequency does not drive the 
global variation in mangrove AGB, and our study suggests that this 
observation holds within geographical limits of cyclone influence 
(p  <  .05). Although mangrove basal area and canopy height con-
tribute positively to AGB (Rovai et al., 2021), our study showed that 
damage decreased when AGB increased and when the canopy was 
shorter. Moreover, we found that the AGB contributed three times 
more than mean maximum canopy height in explaining variation in 
vegetation index change because of cyclone disturbance (12–20% 
vs. 4–6%; Figure  3). With the adjusted r2  ≤  .51 for the regression 
models of ΔVIs (Table 1), it is likely that other forest attributes (e.g., 
stand density, d.b.h. and species identity) that could not be included 
in our models could be important determinants of cyclone-induced 

vegetation loss. Nevertheless, these findings suggest that global re-
sistance of mangroves to cyclones might be mainly the product of 
high AGB rather than shorter canopy, perhaps through a contribu-
tion of tree stem density and tree size (i.e., d.b.h.). Indeed, less dense 
stands can show greater openness, hence greater wind penetration 
and therefore higher wind-induced damage (Kim et  al.,  2020). In 
turn, disturbances can return forests to an earlier successional stage, 
which is characterized by higher tree densities, shorter tree heights 
and overall higher resistance to subsequent cyclone disturbance 
(Flynn et al., 2010).

4.2 | Rates of mangrove canopy recovery are 
consistent globally

Understanding forest recovery dynamics following cyclone distur-
bance is important for modelling mangrove forest carbon fluxes and 
for evaluating thresholds of resistance and resilience to disturbance 
in mangrove forests (Barr et al., 2012; Lagomasino et al., 2021). One 
might hypothesize that mangrove stands that experience more fre-
quent defoliating cyclones might recover canopies faster than those 
that experience less frequent defoliation. Instead, we found that 
mangroves subject to frequent cyclone disturbance did not recover 
faster than those experiencing less frequent cyclone disturbance 
because the magnitude of cyclone-induced damage was the only 
significant and major predictor of time to recovery of EVI and NDII 
(Table  2). Mangrove forests sustaining more severe VI reductions 
(i.e., canopy loss) logically take a longer time to recover (e.g., because 
of damage to branches; Radabaugh et  al.,  2020). Yet, it is surpris-
ing that climatic variables (e.g., rainfall and temperature) played little 
role, given that periods of low rainfall are known to depress man-
grove tree growth and recovery (Gang et al., 2020). Nevertheless, 
other vegetation-related factors not included in our linear models, 
such as species composition, might play a role in explaining canopy 
recovery rates (Duke, 2001; Imbert, 2018; Radabaugh et al., 2020), 
and the lack of inclusion of these variables probably contributes to 
the marginal predictive power of the linear models (adjusted r2 ≤ .48; 
Table 2).

Similar canopy recovery times, coupled with the negative rela-
tionship between cyclone frequency and cyclone-induced vegetation 
loss, suggest that mangrove forest canopies with more frequent cy-
clone disturbances are less damaged (i.e., more resistant) but recover 
at similar rates, with the main factor that governs recovery time being 
the magnitude of canopy damage. Hence, globally, variation in man-
grove canopy resilience to cyclone disturbance is a function of their 
resistance (e.g., low vulnerability to cyclone damage in regions expe-
riencing frequent disturbances) and not their ability to recover more 
quickly following cyclone disturbance. This pattern certainly explains 
why large mangrove forests are present in the Northwestern Pacific, 
a region with a high cyclone frequency (Supporting Information 
Table  S1), although the dominant mangrove trees belong to the 
Rhizophoraceae (Nakasuga,  1979) and can only recover through 
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propagule production and not grow epicormic shoots (Duke, 2001). 
Our finding that canopy recovery might be similar across mangroves 
highlights the risk faced by mangroves in regions where the fre-
quency of intense cyclones is increasing (Kossin et al., 2020; Wang & 
Toumi, 2021), because these forests might not have time to recover 
between disturbances if they become more severely disturbed.

Nevertheless, the remote sensing approach taken in the pres-
ent study to measure canopy damage (i.e., ΔVI) does not translate 
into precise measurement of types of damage; hence, a similar ΔVI 
could be observed from defoliation or structural canopy damage 
(e.g., branch and stem breakage). This variation feeds back to induce 
variation in canopy recovery time, because VI reduction associated 
with defoliation is recovered faster than VI reduction associated 
with branch breakage or tree fall (Radabaugh et  al.,  2020; Smith 
et al., 1994).

4.3 | Vegetation indices as a tool for global ecology

Remotely sensed VIs are used widely and increasingly more often 
in disturbance ecology to monitor canopy dynamics over large 
areas (Gang et  al.,  2020; Taillie et  al.,  2020). The relationship be-
tween spectral bands and leaf characteristics makes it possible to 
track the effect of hurricanes, cold waves and other disturbance 
drivers of mangroves canopy loss (e.g., Zhang et  al.,  2016). Zhang 
et  al.  (2016) concluded that the NDII was among the most sensi-
tive indices to follow the change of the mangrove canopy. In our 
study, the magnitude of cyclone-mediated EVI change was related 
to cyclone frequency, whereas that was not the case for NDII, which 
suggests that the change in canopy structure is likely to be related 
to change in biomass (e.g., via defoliation; Huete et al., 1997), but 
not cyclone-induced change in canopy moisture, to which NDII is 
sensitive (Cheng et al., 2006). Furthermore, the magnitude of dam-
age increased with pre-cyclone EVI but decreased with pre-cyclone 
NDII. Hence, we suggest using multiple VIs in the monitoring of for-
est disturbances because different VIs are likely to track different 
aspects of the mangrove canopies.

5  | CONCLUSIONS

Using two VIs derived from satellite images and other freely avail-
able datasets, we have detected cyclone-induced mangrove for-
est canopy damage and recovery patterns and their drivers, which 
scale globally. We confirm the importance of cyclone characteris-
tics, such as wind speed and storm distance, in modulating the ef-
fects of cyclones on mangrove canopy loss and recovery across the 
world. However, we report a novel finding, whereby both greater cy-
clone frequency and stand AGB reduced the magnitude of cyclone-
induced canopy vegetation loss. Additionally, mean mangrove 
canopy height was positively related to cyclone-induced vegetation 
losses, suggesting that more mature mangrove stands are potentially 

more vulnerable to cyclone damage, especially in regions that expe-
rience few cyclones. Most importantly, cyclone characteristics do 
not affect rates of mangrove canopy recovery after cyclone distur-
bance. We propose that globally, the resilience of mangrove forests 
to cyclone disturbance (i.e., canopy recovery time) is related to for-
est resistance (i.e., the vulnerability of a stand to cyclone damage), 
instead of rates of canopy recovery. These findings imply that as cy-
clones move closer to unaffected coastal areas, both poleward and 
more inland, and as they intensify with climate change, they might 
cause increasing damage to mangrove forests in the coming decades 
to centuries, especially if changes in cyclone disturbance regimes are 
coupled with an increase in frequency and severity of other stress-
ors (e.g., drought).
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