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A B S T R A C T   

Wind gusts and rainfall from tropical cyclones can heavily damage forest canopies, leading to abrupt changes in 
forest structure and tree demography. Although many studies have shown that successive tropical cyclones can 
interact with each other through residual effects, the role of past disturbances is unclear because they may lead to 
damage amplification of the second cyclone because of weakened forest structure, or damage reduction of the 
second cyclone because of previous damage to susceptible trees. We investigated the interaction between 
consecutive cyclones between 2001 and 2017 for five well-conserved forests in Taiwan, which experiences an 
average of 1.75 typhoons annually. Using MODIS imagery, we computed the typhoon-induced change of a 
canopy vegetation index, the Normalized Difference Infrared Index (NDII). The effects of successive typhoons 
were assessed separately for typhoons occurring within a single year (annual analysis) and within two consec
utive years (biennial analysis). We used mixed effect models of reductions in NDII, a measurement of canopy 
damage, in relation to target and past typhoon characteristics and damage magnitude. NDII reduction induced by 
preceding typhoons was slightly more important and statistically significant in explaining the variation in NDII 
reduction associated with the target typhoon in the annual than in the biennial analysis, where the effect was 
non-significant. Canopy damage did not always decrease across typhoons occurring within the same season, 
however, for most successive typhoons in the biennial analysis, the second cyclone caused equal or less canopy 
damage (16 out of 21 typhoon pairs). These results support the idea that residual interactive effects of previous 
typhoons decrease quickly over time and rarely last for several typhoon seasons for Taiwanese forests, 
contributing to their high resistance to frequent typhoon disturbance.   

1. Introduction 

Tropical cyclones (known as typhoons in the Northwest Pacific and 
hurricanes in the North Atlantic) are major disturbances to forest eco
systems. Strong winds and high rainfall from cyclones damage trees. 
Tree damage ranges from defoliation and branch fall to stem breakage 
and whole-tree uprooting (Lugo, 2008; Mabry et al., 1998). In turn, 
these damages influence forest carbon fluxes and stocks through effects 
on forest biomass and litterfall production and decomposition (Liu et al., 
2018; Uriarte et al., 2009; Wang et al., 2013; Xu et al., 2004) as well as 
alterations to forest structure (Brokaw and Grear, 1991; Flynn et al., 

2010; Roth, 1992). Typically, taller trees are disproportionally damaged 
(Ostertag et al., 2005; Taylor et al., 2019 but see de Gouvenain and 
Silander, 2003) so that post-cyclone forests tend to be shorter and with 
more canopy gaps – caused by tree and branch falls – than they are in the 
absence of cyclone disturbance (Brokaw and Grear, 1991; Lagomasino 
et al., 2021; Li et al., 2021; Lin et al., 2020; Parker et al., 2018; Yama
moto, 2000). 

Cyclone characteristics, such as wind speed, wind direction, and 
rainfall, can vary locally to modulate disturbance effects (Cortés-Ramos 
et al., 2020; Hogan et al., 2020; Peereman et al., 2022; Taillie et al., 
2020). In addition, cyclone history should play a significant role in 
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explaining cyclone canopy damage, due to the residual effects of the 
previous cyclones (Buma and Wessman, 2011; Johnstone et al., 2016). 
The legacy of a cyclone has an influence on the effect of later distur
bances, given that post-cyclone forest canopy ingrowth of leaves and 
fine canopy branches generally takes several years, and coarser canopy 
branch ingrowth taking up to decades (Lin et al., 2017; Sharma et al., 
2021). Hence, damage magnitude of subsequent cyclones likely varies 
with the time since the last disturbance. 

Repeated cyclone disturbance over a short period can arrest the 
successional development of forests, maintaining early successional 
states (Janda et al., 2021; Uriarte et al., 2009). In tropical forests, 
temporally clustered cyclones over multiple years can result in severe 
and increasing forest damage, with each cyclone further damaging the 
forests, increasing debris deposition (e.g., ground litter) and leading to 
shorter forests (Ibanez et al., 2019; Liu et al., 2018; Wang et al., 2013). 
For instance, four cyclones of category ≥ 2 (Saffir-Simpson scale; 
Simpson and Riehl, 1981) that passed over the Fiji Islands within eight 
years, led to the loss of > 75% of mangrove forests between 2001 and 
2018 (Cameron et al., 2021). Moreover, forest demographic model 
simulations have shown cyclical storm occurrence preserves land-use 
legacies in secondary forest areas of hurricane-affected Puerto Rican 
forests by altering the size-distribution of adult trees (>10 cm dbh) and 
the recruitment response of the forest to canopy opening (Uriarte et al., 
2009). Thus, cyclones occurring within the same season may lead to 
increased forest damage and novel forest recovery trajectories. For 
example, six typhoons passed over northern Taiwan in 1994 and led to 
an accumulated decrease in forest leaf area index (LAI) of about 66% 
(Mabry et al., 1998), and four typhoons that occurred in the 2008 
typhoon season in Taiwan all caused significant leaf and branch fall in 
hardwood forests of central Taiwan (Wang et al., 2013). Yet, forest 
damage facilitation by previous cyclones on later disturbances (“linked 
disturbance”, Simard et al., 2011) in these examples is unclear and it is 
challenging to distinguish the individual effects of all factors. 

The damage pattern among consecutive cyclones can vary widely 
and the factors influencing variation need further investigation. In fact, 
observations of successive cyclones have shown that recent cyclone 
legacies can increase or decrease the damage severity caused by sub
sequent cyclones (Mabry et al., 1998; Ostertag et al., 2003; Ostertag 
et al., 2005). For example, in the Solomon Islands, the last cyclone of the 
four cyclones that occurred between 1967 and 1970 caused the most- 
severe damage (Burslem and Whitmore, 1999). Whether the severity 
in forest damage by the last cyclone is due to its characteristics (e.g., 
wind speed, distance), or forest damage facilitation by previous cyclones 
is oftentimes unclear. The second of two cyclones might have been the 
most severe because it had the highest wind speed, or due to the effects 
of previous cyclones, or both. Damage facilitation originating from 
recent cyclones has been linked to factors such as cyclone’s maximum 
wind speed and rainfall, as well as the type of recent tree damage. 
Indeed, damage facilitation can occur through tree weakening, either 
because of root damage or to the degradation of tree aboveground 
structure. For instance, trees damaged (snapped or uprooted) by Hur
ricane Hugo in 1989 were more likely to be damaged again by Hurricane 
Georges in 1998 (Ostertag et al., 2005). Mabry et al. (1998) reported 
similar relationships in Taiwan where trees partially uprooted or bole- 
snapped by a first typhoon had greater tip-up prevalence after a sec
ond typhoon occurring within the same cyclone season. Besides, heavy 
rain from cyclones affects soil and tree stability, thus increasing the 
chance of tree fall and the vulnerability of forests to later cyclones 
(Bellingham et al., 1992; Hall et al., 2020; Morimoto et al., 2021). 

Conversely, a decrease in damage severity (i.e., the opposite of 
damage facilitation) associated with subsequent cyclones has also been 
reported. In Puerto Rico, the 1998 Hurricane George caused less damage 
than the 1989 Hurricane Hugo (Ostertag et al., 2003). Higher wind 
speeds of Hurricane Hugo (category 4) than Hurricane George (category 
3) certainly contributed to the greater damage associated with Hurri
cane Hugo than Hurricane George (Ostertag et al., 2003). However, less 

wind-exposed standing vegetation (e.g., lower canopy height) following 
Hugo also played a role in less damage being attributed to George 
(Ostertag et al., 2003). In central Taiwan, the removal of a substantial 
proportion of the forest canopy by earlier typhoons has been suggested 
to contribute to decreased litterfall production and storm-induced litter 
deposition for subsequent cyclones within the same season (Wang et al., 
2013). Although explanations have been proposed regarding how re
sidual effects of recent cyclones may facilitate or decrease the damage of 
subsequent cyclones, it is difficult to generalize because we do not have 
enough studies to clearly distinguish the effects of multiple drivers (e.g., 
wind speed, rainfall, site history) that affect residual effects indepen
dently or interactively. For instance, Parker et al. (2018) studied the 
effects of two hurricanes, a category 2 storm in 2011 and a category 5 
storm in 2015, over the same region, however assessing the effect of the 
preceding hurricane legacies on the 2015 hurricane damages was 
complicated by differences in maximum wind speed between the two 
storms. In this case, the effects of the second and stronger storm were 
confounded with damage facilitation caused by the first hurricane. 
Therefore, comparing different scenarios of successive cyclones occur
rence (e.g., both stronger-then-weaker successive cyclones and weaker- 
then-stronger ones) within the same cyclone season or across multiple 
cyclone seasons, is necessary to have a more complete picture of the 
effects of recent past cyclones on later cyclone disturbances over the 
same region. 

Remote sensing techniques are extensively used to monitor cyclone 
disturbances at the landscape scale (e.g., Chambers et al., 2007; Feng 
et al., 2020; Peereman et al., 2022). Because approaches can be stan
dardized, remote sensing data are useful for comparing multiple 
disturbance events over time and at various spatial scales. For instance, 
Wang et al. (2016) estimated litterfall dynamics in Taiwanese forests 
over 10 years using the Moderate Resolution Imaging Spectroradiometer 
(MODIS) data, and documented interannual variation that reflected 
typhoon canopy damage and recovery dynamics. Similarly, de Beurs 
et al. (2019) computed a MODIS-based disturbance index to monitor the 
effects of cyclone disturbance and drought and their interaction across 
Caribbean forests. However, that study did not investigate relationships 
between multiple cyclone events or residual effect over time. Many 
studies have relied on vegetation indices (VI) to monitor canopy change 
(Peereman et al., 2020; Rossi et al., 2013; Wang et al., 2010). Among the 
numerable VIs, the Normalized Difference Infrared Index (NDII, Har
disky et al., 1983) tracks canopy water content and can be used to assess 
canopy change dynamics. In fact, NDII has been shown to be a reliable 
proxy for forest canopy cover change (Gang et al., 2020; Jin and Sader, 
2005; Wang et al., 2010). 

Despite the large number of studies that have used remote sensing 
approaches (Frolking et al., 2009), few have endeavored to compare the 
effects of different cyclones over a same region (Cortés-Ramos et al., 
2020; McLaren et al., 2019; Parker et al., 2018; Peereman et al., 2020). 
Little is known of the interaction between temporally clustered cyclones. 
Yet, a better understanding of how temporally clustered cyclones affect 
forests and the factors that modulate disturbance effects is critical 
because forests are likely to experience an increasing frequency of severe 
cyclone disturbances. Global climate change is expected to create larger 
and more-powerful cyclones (Sun et al., 2017) with slowing translation 
speeds and increased rainfall (Patricola and Wehner, 2018; Takemi, 
2019; Zhang et al., 2020). Moreover, global climate change will 
continue to shift tropical cyclone trajectories toward coastal area (Wang 
and Toumi, 2021), with a higher frequency of landfalls in some regions 
such as in the North-Western Pacific (Liu and Chan, 2020; Xiao, 2021). 

Due to its location within the North-Western Pacific cyclone hotspot, 
Taiwan has an extensive cyclone record to analyze the effects of recur
ring disturbances in relation to short cyclone return intervals, providing 
observations that are relevant for other regions where cyclones are ex
pected to become more frequent. Although cyclones have long-lasting 
consequences on ecosystems (e.g., Lin et al., 2017; Murphy et al., 
2014), we focus our analyses on cyclones which have occurred within 
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the same cyclone season (annual) that generally spans from July through 
October, or within two consecutive cyclone seasons (biennial) because 
Taiwan is exposed to frequent cyclone disturbance. According to the 
International Best Track Archive for Climate Stewardship (IBTrACS), the 
frequency of ≥ category 1 typhoons passing within 100 km of the main 
island has averaged 1.75 typhoons per year from 1980 to 2020 (Knapp 
et al., 2018; Knapp et al., 2010). Using NDII, we quantify the effects of 
annual and biennial successive typhoons on canopy damage magnitude 
for five forests in Taiwan, accounting for current and past typhoon 
characteristics. We address the following questions: 

i) What is the importance of recent past-typhoon legacy in explaining 
the canopy damage magnitude of subsequent typhoons? 
ii) Is the relationship between two successive typhoons within a 
typhoon season maintained if they occurred within two successive 
typhoon seasons (i.e., if cyclones are separated by a growing season)? 
iii) Is the relationship between two successive typhoons modulated 
by the relative wind speed of the two typhoons (i.e., different when 
the first typhoon had stronger versus weaker wind speeds than the 
second typhoon)? 

We hypothesized that cyclone disturbance effects compound one 
another when occurring in rapid succession (i.e., within the same sea
son), and hence canopy damage caused by the first typhoon will facili
tate canopy damage by subsequent typhoons. Furthermore, we 
anticipated that more damage should be caused by the second typhoon 
when the first typhoon had stronger wind speeds and more rainfall than 
the second typhoon, because it should have increased the vulnerability 

of the forest to canopy damage by the second typhoon. 

2. Material and methods 

2.1. Studied sites 

Five montane forests across Taiwan were selected (Fig. 1; Fig. S1). 
The site selection was based on the following criteria: being located 
within a protected area and hence relatively free of direct anthropogenic 
influence, being large enough to accommodate coarse spatial resolution 
imagery (500 m, MODIS) and being located at different latitudes across 
the Central Mountain Range of Taiwan that spans the island along its 
North-South axis so that sites were representative of Taiwanese montane 
forests. Moreover, all sites except Lienhuachih (538 to 930 m) span 
considerable altitudinal ranges (228 to 1352 m for Chachaylaishan, 485 
to 1451 m for Fushan, 296 to 1842 m for Lijia, 872 to 3450 m for Yuli). 
All sites are subject to very frequent typhoons, ranging from 26 to 31 
typhoons ≥ category 1 and 11 to 15 typhoons ≥ category 3 passing 
within 100 km of each site centroid between 1980 and 2017 (IBTrACS). 
Given that the typhoon frequency is comparable across all sites, it is 
unlikely that differences in canopy resistance mediated by cyclone fre
quency have arisen differently among sites (Peereman et al., 2022). 

2.2. Datasets 

Studied areas were delineated using the Worldwide Database of 
Protected Areas (IUCN and UNEP-WCMC, 2021; for Chachayalaishan, 

Fig. 1. Locations of the five Taiwanese forest sites and tracks of the 29 typhoons included in the study. Track colors indicate their intensity according to the Saffir- 
Simpson scale and IBTrACS dataset (Knapp et al., 2018; Knapp et al., 2010; Simpson and Riehl, 1981). Taiwan’s central mountain range is shown in green based on 
the Aster global digital elevation model version 2. The five forest sites are shown in Supporting Information Figure S1. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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Lijia, Yuli) and personal knowledge of the forest areas (Dr. Chung-Te 
Chang, personal communication). The typhoon data were extracted 
from the IBTrACS dataset on world cyclone tracks. We selected all ty
phoons ≥ category 1 (wind speed ≥ 119 km/h) on the Saffir-Simpson 
scale within 100 km range from each site centroid which occurred 
within a two-season window. 

To monitor forest canopies, we used the MODIS global daily ground 
reflectance data from NASA’s Terra and Aqua satellites (MCD19A1 
collection version 6) (Lyapustin and Wang, 2018). The MCD19A1 
collection is a daily imagery product available for years after 1999 with 
a 500 m spatial resolution for bands 1 to 7 (blue to short-wave in
frareds). The MCD19A1 collection is derived from the Multi-Angle 
Implementation of Atmospheric Correction (MAIAC) algorithm pro
cessing that allows for improved cloud detection and atmospheric and 
aerosol correction over time (Lyapustin et al., 2011a; Lyapustin and 
Wang, 2018; Lyapustin et al., 2011b). VI-based studies of evergreen 
tropical forests have used the MCD19A1 collection in the Amazon, Af
rica, and Southeast Asia (Hashimoto et al., 2021; Nunes et al., 2019; 
Ploton et al., 2020). Furthermore, although Landsat or Sentinel imagery 
have finer spatial resolutions, their lower temporal resolutions make the 
study of tropical and subtropical forests difficult because of frequent 
cloudiness (Asner, 2001; Negrón-Juárez et al., 2014b), including forests 
in Taiwan (Thies et al., 2015). 

To constrain the analysis to areas without forest loss across the study 
period (i.e., from 2001 to 2017), we used the MODIS collection 
MCD12Q1 version 6, which provides yearly-supervised land surface 
classification since 2001 at a 500 m resolution. The MCD12Q1 collection 
contains different classification schemes, among which we selected the 
one from the International Geosphere-Biosphere Programme. Table S1 
in the Supplementary materials provides the list of MCD19A1 and 
MCD12Q1 scenes used in this study. 

For each typhoon, we computed the pixelwise nearest distance to the 
typhoon track. In addition, we used the HURRECON model to estimate 
pixelwise maximum wind speed based on the IBTrACS dataset and the 
“HurreconR” package (Boose et al., 1994). The HURRECON model 
computes local maximum wind speed and wind direction based on the 
land cover and distance from the typhoon paths, however it does not 
take topography into account. Therefore, we computed the windward
ness of each pixel as a measure of wind exposure, as windwardness has 
been shown to affect severity of typhoon disturbance (Boose et al., 
2004). Windwardness is the angle between wind direction computed by 
HURRECON and the slope aspect (Feng et al., 2020). A windwardness of 
0◦ implies that the pixel and the wind face the same direction (leeward) 
and the slope is not exposed, whereas an angle of 180◦ signifies that 
slope and wind face opposite directions and that the slope is thus 
exposed (windward). 

2.3. Processing and vegetation indices 

All MODIS-derived data were retrieved using the package 
“MODIStsp” (Busetto and Ranghetti, 2016) in R 4.0.3 (R Core Team, 
2020), and re-projected to the 51 N UTM Zone (WGS-84) using bilinear 
(MCD19A1) and nearest neighbor interpolation (MCD12Q1). 

We computed the NDII (equation (1)), a vegetation index based on 
the NIR and shortwave infrared (SWIR) band 7. MODIS sensors have 
three SWIR bands, centered on 1240 nm (band 5), 1640 nm (band 6) and 
2130 nm (band 7) wavelengths. We selected band 7 over bands 5 and 6 
because studies have shown that NDII based on bands 6 or 7 monitored 
canopy defoliation better than NDII based on band 5 (de Beurs and 
Townsend, 2008; Gao, 1996), and because band 6 of the Aqua sensor has 
striping issues (i.e., periodic noise across the image; Wang et al., 2006). 
Being based on SWIR and NIR, NDII is used to track leaf water content 
(Ceccato et al., 2001). In addition, NDII has been extensively used to 
investigate cyclone disturbances on forest landscapes and is more sen
sitive than other VIs to canopy change, especially in high biomass forests 
(Gang et al., 2020; Jin and Sader, 2005; Wang et al., 2010; Zhang et al., 

2016). 

NDII =
NIR − SWIR
NIR + SWIR

(1) 

Given the high cloudiness of Taiwan, all scenes (i.e., images) 30-days 
before and after typhoon passage were considered; this period typically 
avoids early canopy recovery that begins within the first month after 
disturbance (using MODIS, de Beurs et al., 2019). Scenes within this 
period were merged to produce composite imagery, characterizing the 
forest canopy before and after disturbances. The maximum NDII values 
of each pixel were selected among all possible values because they 
describe the reflectance values of the canopy with minimal loss through 
the atmosphere. No further processing was applied given that the 
MAIAC algorithm provides surface reflectance data with identified 
cloudy pixels, which were excluded from the analysis. 

To characterize the effect of successive typhoons, we computed the 
relative change in NDII values, ΔNDII (equation (2)), which is defined as 
the difference between pre- and post-typhoon NDII values divided by the 
pre-typhoon NDII value for each pixel. Hence, a positive value indicates 
that the canopy was damaged by the typhoon; the greater the value, the 
greater the canopy damage. We studied pairs of successive typhoons in 
two types of succession: typhoons that had occurred within the same 
typhoon season (i.e., the annual analysis), and typhoons that had 
occurred within two consecutive typhoon seasons with typhoons being 
separate by a non-typhoon growing season (i.e., the biennial analysis). 
Analyses were conducted independently to minimize the loss of pixels 
due to cloud cover. All values were then extracted using the “raster” 
package (Hijmans, 2019) after resampling of elevation, wind speed and 
windwardness products to the MODIS resolution using bilinear 
interpolation. 

ΔNDII =
NDIIpre− disturbance − NDIIpost− disturbance

NDIIpre− disturbance
(2)  

2.4. Data analyses 

We removed outliers (values above and below first and third quar
tiles: ± 1.5 × inter quartile range) in NDII before computing ΔNDII 
(Tukey, 1977). Then, all ΔNDII < 0 were set to 0 as they do not describe 
loss of canopy; hence 0 indicates the absence of damage. 

2.4.1. Role of typhoon characteristics and preceding disturbance 
Pearson correlation analysis was used to assess the correlation be

tween the windwardness of the target and preceding typhoons in both 
annual and biennial analyses in order to assess whether some areas is 
generally more exposed to typhoons. 

We used linear mixed effects models of the canopy damage based on 
ΔNDII and predictors related to target typhoon characteristics, pre- 
typhoon vegetation conditions, and the NDII change caused by the 
preceding typhoon. A variable composed of site and typhoon identity 
was used as random intercept term (e.g., ‘lonlie’ for Typhoon Longwang 
in Lienhuachih forest). Spatial correlation among sites was addressed 
using the pixel coordinates and an exponential structure in the model 
variance–covariance structure. First, multicollinearity among predictors 
was assessed by computing pairwise correlations, and for highly corre
lated predictor pairs (r > 0.8), the predictor with the lowest correlation 
with ΔNDII was excluded from models. For the annual analysis, pre
dictor variables related to the target typhoon and the preceding typhoon 
were considered. Target typhoons variables were pixelwise maximum 
wind speed, and windwardness. We also included altitude (from ASTER 
GDEM V2) because the sites covered large elevation gradients. The 
preceding typhoon was characterized by the ΔNDII associated with its 
passage. The NDIIpre-cyclone was also included because it characterizes 
the canopy state of the forest stand before the target typhoon event. 
ΔNDII was log-transformed to improve normality and all fixed pre
dictors except for wind speed were scaled and centered for each event 

J. Peereman et al.                                                                                                                                                                                                                               



Forest Ecology and Management 521 (2022) 120430

5

(mean of 0 and standard deviation of 1). Wind speed could not be 
normalized because all pixels had the same values in some instance. The 
model was fitted using restricted maximum likelihood. Marginal and 
conditional model goodness of fit (R2) are reported using the Nakagawa 
et al. (2017) method. 

The linear mixed-effects model for the biennial analysis was fitted 
similarly, although predictors covered two separate years: the year of 
the target typhoon, and the typhoon season of the preceding year. For 
the biennial analysis, we used the same predictor variables as for the 
annual analysis, but for the typhoon of the target year, and for all ty
phoons in the previous typhoon season. We included the NDIIpre-cyclone 
value, to represent the canopy state of the forest before disturbance. 
Total ΔNDII between the first and last typhoons was used to characterize 
the previous typhoon season, hence describing the effect of the previous 
typhoon season on the canopy. 

2.4.2. Typhoon strength, and variation in damage severity between 
successive events 

To assess whether the degree of canopy damage (i.e., changes in 
NDII) caused by each target typhoon was different from the preceding 
event, we compared ΔNDIItyphoon and ΔNDIIprevious typhoon of each 
typhoon pair using bootstrapped comparisons on means as ΔNDIItyphoon 
− ΔNDIIprevious typhoon over 5000 iterations. A positive 95% confidence 
interval (95% CI) indicates greater canopy damage for the target 
typhoon than for the preceding typhoon. Then, for both the annual and 
the biennial cases, we grouped studied typhoons into two groups 
describing the scenarios, where either a weaker target typhoon followed 
a stronger typhoon (wind speedtyphoon < wind speedprevious typhoon, 
stronger-then-weaker scenario) or a stronger target typhoon followed a 
weaker typhoon (wind speedtyphoon > wind speedprevious typhoon, weaker- 
then-stronger scenario). Here, the maximum wind speed was the mean 
maximum wind speed across all pixels. The two groups were compared 
using bootstrapped comparisons of means (5000 iterations) comparing 
the ΔNDII of the stronger-then-weaker typhoon scenario to ΔNDII of the 

Fig. 2. Relative NDII change (ΔNDII) measured following two consecutive typhoons occurring within the same year. The maximum wind speed (meter per second) 
measured for each typhoon is shown in color and indicated for the preceding (1) and target typhoon (2) in each panel. Significant differences are detected using 
bootstrapped comparisons on means (Supplementary Material Table S3) and they are indicated with the symbols above each pair of boxplot, with > indicating 
significantly greater damage during the preceding typhoon (95% confidence interval < 0), < indicating significantly greater damage during the following typhoon 
(95% confidence interval > 0). NS indicates the absence of significant difference (95% confidence interval includes 0). 
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weaker-then-stronger typhoon scenario. A positive 95% CI suggests that 
the target typhoons in the weaker-then-stronger scenario caused less 
damage than in the stronger-then-weaker scenario. 

3. Results 

3.1. Typhoon damage is predicted by the typhoon characteristics and 
recent typhoon disturbances 

Typhoon-induced drops in NDII were detected in all sites (Figs. 2-3). 
Windwardness of target typhoon and the windwardness of the preceding 
typhoon had a correlation of 0.71 (p < 0.001) in the annual analysis and 
0.16 in the biennial analysis (p < 0.001). 

Predictors used in the models had low to moderate correlations for 
both the annual and the biennial analyses and therefore were not 
excluded (≤0.42; Supplementary Material, Table S2). In the annual 
analysis, the linear mixed model had marginal R2 of 0.40 and 

conditional R2 of 0.61 (Table 1). ΔNDIIs (i.e., canopy damage) were 
positively related with pre-cyclone NDII. The canopy change caused by 
previous typhoons had significant relationship with ΔNDII: ΔNDII 
decreased with increasing damage associated with the previous typhoon 
(ΔNDIIprevious typhoon; − 0.002 ± 0.0004, Table 1). However, typhoon 
characteristics (wind speed, windwardness) did not have a significant 
role in explaining ΔNDII (p ≥ 0.11). 

In the biennial analysis, the model had a marginal R2 of 0.12 and 
conditional R2 of 0.29 (Table 1). Pre-disturbance NDII was positively 
related to typhoon-induced change, whereas ΔNDII associated with the 
past typhoon season was not significant (p = 0.46). 

3.2. Forest canopy damage of successive typhoons 

ΔNDII between successive typhoons was not always significantly 
different in both the annual and biennial analyses (Figs. 2-3). In the 
annual analysis, there was no trend for either greater (ten cases) or less 

Fig. 3. Relative NDII change (ΔNDII) measured after the previous typhoon season (year) and the first typhoon of the second typhoon season (indicated by its name). 
The maximum wind speed (meter per second) measured for each typhoon is shown in color and indicated for the preceding season (1) and target typhoon (2) in each 
panel. Significant differences are detected using bootstrapped comparisons on means (Supplementary Material Table S3) and they are indicated with the symbols 
above each pair of boxplot, with > indicating significantly greater damage during the preceding typhoon season (95% confidence interval < 0), < indicating 
significantly greater damage during the following typhoon (95% confidence interval > 0). NS indicates the absence of significant difference (95% confidence interval 
includes 0). 
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canopy (nine cases) damage associated with the second typhoon among 
the 21 pairs of typhoons studied (Fig. 2). However, in the biennial 
analysis, canopy damage caused by the second typhoon was generally 
less than the damage caused by the strongest typhoon of the preceding 
typhoon season: the preceding typhoon season had significantly higher 
damage 52% of the time (11 of 21 typhoon pairs versus five of 21 for the 
second typhoon) (Fig. 3). 

Overall, the typhoon with the greater wind speed of each pair of 
typhoons tended to cause greater NDII reduction in both the annual and 
biennial analyses (Fig. 3 and Fig. 4). However, ten cases in the annual 
analysis (Fig. 3) and nine cases in the biennial analysis (Fig. 4), had 
greater NDII reduction associated with the weaker typhoon of the two 
(Fig. 3 and Fig. 4). Mean ΔNDII associated with the second typhoon was 
greater when the second typhoon had stronger wind speed than the 
preceding disturbance in the annual analysis (95 %CI − 0.004;− 0.0004, 
0.017 ± 0.0006 versus 0.020 ± 0.001), although the opposite was 
observed in the biennial analysis (95% CI 0.002;0.0070, 0.024 ± 0.0011 
versus 0.019 ± 0.0007). However, there were six cases in the annual 
analysis and four cases in the biennial analysis in which ΔNDII was 
smaller for the second typhoon than for the first typhoon, even when the 
second typhoon had greater wind speed than the first. 

4. Discussion 

4.1. Damage detection 

Studies of cyclone effects on forest canopies have often highlighted 
the effect of strong winds and heavy rains on forest canopy damage 
through defoliation. Remote sensing-derived VIs, such as NDII, indi
rectly register canopy damage in tropical and subtropical forests by 
measuring reductions in canopy water content (i.e., reflectance) 
(Peereman et al., 2020; Zhang et al., 2016; Schwartz et al., 2019). 
Notably, the changes detected using our method only represent short- 
term storm-related canopy damages, such as defoliation (de Beurs and 
Townsend, 2008), and not the delayed canopy mortality that can occur 
in the months after cyclone passage, which could represent a significant 
portion of total cyclone-induced tree mortality (Bellingham et al., 1995; 
Imbert et al., 1998). Additionally, the effect of early canopy recovery in 
our observations should be minor, because our analyses used images 
from a maximum of 30 days following cyclone events. Even though 
tropical forest canopies can regrow quickly (Ostertag et al., 2003), the 
majority of canopy recovery likely begins at one to two months after 
cyclone passage (Feng et al., 2020; Gang et al., 2020; Hu and Smith, 
2018). 

4.2. Current and past typhoon effects on canopy damage 

As expected, the pre-disturbance canopy state was a significant 
predictor of typhoon-induced canopy damage because cyclone damages 
are related to the stand developmental state (Kim et al., 2020; Lin et al., 

2020). Factors like tree size, canopy area, and LAI are key modulators of 
cyclone damage magnitude (Dittus, 1985; Hall et al., 2020; Harrington 
et al., 1997; Ostertag et al., 2005). Harrington et al. (1997) have re
ported similar positive relationships between cyclone-induced re
ductions of LAI and pre-disturbance LAI and tree height in a Hawaiian 
forest. In addition, Feng et al. (2020) showed that the Hurricane Maria 
induced damages increased with greater remotely-sensed pre-distur
bance green vegetation (derived from spectral mixture analysis), and 
canopy height and forest age in Puerto Rico. Moreover, comparing 
multiple hurricanes, Feng et al. (2021) showed that pre-disturbance 
green vegetation remained among the most important predictors of 
hurricane-induced damages. Because the variation in NDII has been 
related to defoliation and changes in forest canopy biomass (Dahal et al., 
2014; de Beurs and Townsend, 2008), we suggest that the higher wind 
drag associated with higher NDII values likely contribute to increased 
cyclone-driven forest damage (Lin et al., 2020). 

However, unlike forest developmental state, typhoon characteristics 
were not significant in explaining the variation in canopy damage. It is 
likely that modelled wind speeds do not always accurately represent the 
actual wind conditions in the forests, because of the coarse spatial res
olution of this study (i.e., at the resolution of MODIS imagery), rough 
landscape topography, and dynamic wind fields (Boose et al., 1994; 
Negrón-Juárez et al., 2014b). Some tropical cyclones may have high 
wind speed but little rainfall, whereas others have high rainfall and 
weak winds (Cortés-Ramos et al., 2020; Feng et al., 2021). This likely 
explains the complexity in finding a common set of predictors in our 
models across several cyclones over the same region. These results are 
consistent with Feng et al. (2021) who modelled the effects of hurricanes 
in the North Atlantic, and found that the importance of wind and rain in 
explaining vegetation disturbance varied over different regions because 
of hurricane properties and topographical effects (McEwan et al., 2011). 

We suggest that canopy damages did not scale with the maximum 
sustained wind speed computed using HURRECON in our models 
because of the complexity of sites topography and the sheltering effect 
caused by the Taiwan Central Mountain Range (3000 m, Lee et al., 2008; 
McEwan et al., 2011), although wind speed is generally higher near the 
cyclones’ eye (Turton, 2008). In addition, we postulate that the lack of a 
relationship between windward aspect and typhoon wind direction may 
also arise from topographic effects (e.g., topographic exposure, Boose 
et al., 1994), and the untested effect of cyclone track side, because wind 
speeds are generally greatest at the leading right quadrant of cyclone 
tracks in the northern hemisphere (Feng et al., 2020; Negrón-Juárez 
et al., 2014a). Windward landscape aspect of target and preceding ty
phoons in the annual analysis had a correlation of 0.71, implying that 
some areas are generally more exposed than others. Repeated exposure 
is likely a factor which increases forest resistance to cyclone damage as 
reported in other tropical forests (Feng et al., 2020; Peereman et al., 
2022), but which may have a greater potential effect in Taiwan because 
of the high frequency of cyclones (Peereman et al., 2022). Increased 
resistance likely occurs via the removal of highly-susceptible tall trees or 

Table 1 
Linear mixed-effects model coefficients and statistics of the annual and biennial models. Coefficient means (with standard errors, SE) are given for the change in 
Normalized Difference Infrared Index (ΔNDII) caused by typhoons preceding a second typhoon during the same season (annual analysis) or the next season (biennial 
analysis). Note: ΔNDII response was log transformed, all fixed factors were centered and scaled with a mean of 0 and a standard deviation of 1 except for wind speed 
because for some events the wind speed was the same across all the pixels.   

Annual analysis  Biennial analysis   
Predictors Coefficient (SE) t p Coefficient (SE) t p 

Intercept 0.141 (0.024) 5.980 <0.001 0.164 (0.044) 3.747 <0.001 
Wind speed 0.001 (0.001) 1.582 0.114 − 0.0002 (0.001) − 0.200 0.842 
Windwardness 0.0001 (0.0003) 0.427 0.670 0.001 (0.0004) 1.173 0.241 
ΔNDIIprevious-typhoon − 0.002 (0.0004) − 4.088 <0.001 0.001 (0.001) 0.735 0.462 
elevation − 0.000003 (0.000002) − 1.562 0.118 − 0.0002 (0.001) − 0.133 0.894 
NDIIpre-typhoon 0.160 (0.006) 26.014 <0.001 0.144 (0.008) 17.985 <0.001 
Statistics n = 6420; df = 6394; AIC = − 35972.92; Marginal R2 = 0.402; Conditional R2 

= 0.611; random effect variance = 0.0004 
n = 5893; df = 5867; AIC = − 28278.82; Marginal R2 = 0.116; Conditional 
R2 = 0.286; random effect variance = 0.0004  
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those with large canopies, which results in reductions in forest stature 
over time, especially in frequently-disturbed expose areas (Lin et al., 
2020), meaning that sheltered slopes can show smaller difference in 
damages than exposed slopes. 

In addition to the expected role of pre-disturbance vegetation state 
(Hall et al., 2020; Lin et al., 2003; Taillie et al., 2020), our study dem
onstrates that the change in canopy cover caused by previous typhoons 
was a significant predictor of canopy damage caused by target typhoons. 
Although studies have related cyclone legacies to subsequent distur
bances (Kim et al., 2020; Ostertag et al., 2005; Peereman et al., 2022), by 
using data across several forests from many typhoon seasons, our study 
provides evidence that disturbance legacies are an important part of 
forest dynamics in cyclone-prone areas (e.g., Taiwan and the Caribbean). 
The significant negative role of past canopy cover reduction (i.e., 
ΔNDIIprevious typhoon) in our model of the annual analysis implies that 
areas that were more-greatly disturbed in the same season are likely to 
be less-severely affected by a subsequent typhoon within that season. 
Even though tropical forest canopies can regrow quickly (Ostertag et al., 
2003), the onset of recovery likely begins at one to two months after 
cyclone passage (Feng et al., 2020; Gang et al., 2020; Hu and Smith, 
2018). Therefore, a possible explanation is that these forests have lost 
most of the vulnerable canopy surface area after the first typhoon of the 
season, and will experience lesser relative damage by the second 
typhoon due to reduced canopy surface areas. 

Previous typhoons reduce the amount of vulnerable matter before 
the target typhoon occurs. This removal effect was found to be an 
important modulator of canopy damage in Puerto Rico, explaining the 
decrease in damage severity of Hurricane Georges (in 1998) relative to 
Hurricane Hugo (in 1989) (Ostertag et al., 2003). In Taiwan, residual 
effects were also observed. Canopy damage severity typically decreased 
for target typhoons in comparison with the preceding typhoon, even 
when the preceding typhoon was weaker than the target typhoon 
(Fig. 2). This could explain why forests in Taiwan, although frequently 
exposed to typhoons, persist and usually show less damage than forests 
of other regions in response to cyclones of similar intensity (Hogan et al., 
2018; Lin et al., 2011; Peereman et al., 2022). 

Multiple other unexamined factors probably play a role in explaining 
forest canopy damage to cyclones, given that our models marginal R2 

ranged between 0.12 for the biennial analysis and 0.40 for the annual 
analysis. Topography can be important in explaining cyclone damage 
variation across landscapes (McLaren et al., 2019). For example, some 
areas are more-repeatedly disturbed than others because of a higher 
exposure or stronger wind speeds (Boose et al., 1994; Boose et al., 2004; 
Feng et al., 2020; Negrón-Juárez et al., 2014a; Negrón-Juárez et al., 
2014b; Zhang et al., 2013). Where possible more topographical vari
ables (e.g., terrain roughness) could potentially be included to improve 
the model fit. 

4.3. The role of past typhoons changes between annual and biennial 
analyses 

A unique finding of our study is that past typhoons had an increased 
role in explaining target typhoon disturbance if they occurred during the 
same season than if they occurred a season earlier. One possible reason is 
that by the next year forest canopy had recovered substantially through 
the budding and leafing in March and April (Lin et al., 1997). Rapid re- 
leafing means that there are fewer canopy disturbance legacies inter
acting with typhoons of the next season. 

It is not surprising that the stronger of the two typhoons in each of 
the typhoon pairs generally caused greater canopy damage, as high 
winds are the key agent damaging tree canopies. However, it is inter
esting that the weaker-then-stronger scenario more frequently caused 
severe canopy damages in the annual analysis than in the biennial 
analysis, with six and three cases respectively (Figs. 2-3). Likely, can
opies opened by a previous disturbance can be more exposed to wind 
gusts within the same year than they are one year later, once the canopy 

has started to recover (Inagaki et al., 2008; Leitold et al., 2021). How
ever, the mechanisms leading to less canopy disturbances from subse
quent cyclones may be different between the Pacific basin (i.e., Taiwan) 
and the North Atlantic basin. In the North Atlantic basin (i.e., the 
Caribbean) the decreases in disturbance severity caused by the second of 
two hurricanes were attributed to the lower amount of vulnerable can
opy biomass (Kim et al., 2020; Ostertag et al., 2003). In contrast, the 
decreased damage severity from subsequent typhoons in our study 
seems to be related to less residual effects associated with higher canopy 
resistance (i.e., decreased litterfall, Xu et al., 2004), as well as faster 
recovery and thus lower wind exposure. Further studies of the effects of 
multiple successive cyclones on canopy disturbance and recovery dy
namics are necessary because the interactions between wind, rain and 
tree crowns are incredibly complex, often resulting in a highly variable 
and patchy damage signature across forest landscapes, and because 
cyclone return intervals are variable (Boose et al., 2004; Negrón-Juárez 
et al., 2014a; Negrón-Juárez et al., 2014b). 

Our study clearly demonstrates that forest landscapes in Taiwan can 
rapidly overcome much of the residual effects of recent disturbances 
because canopy change induced by past typhoons is less important a 
year later than during the same typhoon season. However, residual ef
fects of cyclones are likely different between Taiwan and regions with 
less frequent cyclone disturbance due to the differences in the magni
tude and rate of recovery (i.e., forest biomass increment) before the next 
disturbance event. The projected increase in cyclone intensity and 
number of landfall cyclones (Kossin et al., 2020; Wang and Toumi, 
2021) may shape tropical forests in novel ways because of interactions 
between disturbances legacies from preceding cyclones and target 
storms are likely to change. Further research is needed to determine 
whether forests under very frequent cyclone disturbances (e.g., those in 
the Northwestern Pacific) experience lower residual effects, and thus 
may be less threatened by cyclone intensification than other regions. 

4.4. Vegetation indices and remote sensing of consecutive typhoon 
disturbances 

Our use of NDII has uncovered forest canopy cover dynamics because 
NDII is related to canopy water content (Jin and Sader, 2005; Wang 
et al., 2010). Nevertheless, our analyses were limited by the frequent 
cloud cover associated with the typhoon season, which led to the 
exclusion of some satellite imagery. Clouds prevented the observation of 
additional consecutive disturbances in our analysis even though MODIS 
sensors provide images with a temporal resolution finer than one day. 
For landscape to regional studies, geostationary satellites with very fine 
temporal resolution, such as Himawari 8 (Hashimoto et al., 2021; Khan 
et al., 2021), and the use of solar-induced fluorescence as well as drone- 
and LiDAR-based methods such as GEDI (Dubayah et al., 2020) may help 
to explore the effects of future cyclones on forest canopies (Duan et al., 
2017; Gang et al., 2020; Leitold et al., 2021; Miura and Nagai, 2020). 

5. Conclusions 

Typhoon-mediated disturbances of Taiwanese forests between 2001 
and 2017 shows that canopy damage (as seen through ΔNDIIs) is, in 
part, explained by the pre-disturbance vegetation state (NDIIpre-typhoon), 
but also by the canopy change associated with the preceding typhoon 
(ΔNDIIprevious typhoon). The negative relationship between past typhoon- 
induced canopy change and target typhoon damage invalidated our 
hypothesis regarding damage facilitation, as damage by a second 
typhoon within one year decreased when preceding typhoons had 
already caused the significant canopy disturbance. Yet, within a single 
typhoon season, the second of two typhoons can sometimes result in 
greater canopy damage when it had higher wind speed. Thus, we 
conclude that for Taiwanese forests, the interactive disturbance effects 
on canopy damage dynamics usually diminish by the next typhoon 
season. As a result, low typhoon residual effects may be one factor which 
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explain the relatively high levels canopy resistance to typhoon distur
bance of Taiwanese forests. Further research is still required, however, 
to make firm generalizations about the relationships between successive 
disturbances to tropical forest canopies globally, or among different 
cyclone basins. 
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