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Abstract: Cyclonic windstorms profoundly affect forest structure and function throughout the 
tropics and subtropics. Remote sensing techniques and vegetation indices (VIs) have improved our 
ability to characterize cyclone impacts over broad spatial scales. Although VIs are useful for 
understanding changes in forest cover, their consistency on detecting changes in vegetation cover 
is not well understood. A better understanding of the similarities and differences in commonly used 
VIs across disturbance events and forest types is needed to reconcile the results from different 
studies. Using Landsat imagery, we analyzed the change between pre- and post-typhoon VI values 
(ΔVIs) of four VIs for five typhoons (local name of cyclones in the North Pacific) that affected the 
Fushan Experimental Forest of Taiwan. We found that typhoons varied in their effect on forest 
canopy cover even when they had comparable trajectories, wind speeds, and rainfall. Most VIs 
measured a decrease in forest cover following typhoons, ranging from -1.18% to -19.87%; however, 
the direction of ΔVI–topography relationships varied among events. All typhoons significantly 
increased vegetation heterogeneity, and ΔVI was negatively related to pre-typhoon VI across all 
typhoons. Four of the five typhoons showed that more frequently affected sites had greater VI 
decreases. VIs ranged in their sensitivity to detect typhoon-induced changes in canopy coverage, 
and no single VI was most sensitive across all typhoons. Therefore, we recommend using VIs in 
combination—for example Normalized Difference Infrared Index (NDII) and Enhanced Vegetation 
Index (EVI), when comparing cyclone-disturbance-induced changes in vegetation cover among 
disturbances and across forests. 
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1. Introduction 

Tropical forests harbor a large portion of global biodiversity [1] and play a key role in global 
carbon cycling [2–4]. An estimated 52% of the terrestrial carbon pool is contained by tropical and 
subtropical forests, although they cover less than 15% of the land surfaces excluding Antarctica [5]. 
Thus, changes in the geographic extent and quality (i.e., structure) of tropical forests have major 
effects on biodiversity conservation efforts [6,7] and important ecological processes such as carbon 
sequestration [8,9]. Disturbances such as fires, pathogens, and tropical cyclones are important agents 
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affecting the dynamics of many tropical and subtropical forests [10–12]. Tropical cyclones are among 
the most common natural disturbances to tropical and subtropical forests [13]. Cyclones vary in their 
effects on forest structure and damage to individual trees, with damage ranging from defoliation and 
branch-stripping to bole-snapping and the uprooting of trees [14]. These events have consequences 
for forest functioning through the changing of canopy cover, gap formation, and tree population 
demography [12,15]. 

Spatial patterns of damage are key to understanding forest ecosystem dynamics in relation to 
cyclone disturbance at the landscape scale. In addition to vegetation characteristics such as forest 
type, species, phenological and successional state [16–22], and the distance to cyclone eye [23–26], 
landscape topography is also a main factor which modulates cyclone disturbance effects on 
vegetation [27,28]. Cyclones tend to have greater effects in exposed areas, such as ridges or windward 
slopes [25,26,29–33]. In addition, cyclone damages may vary with elevation [31,34], slope steepness 
[20,32] and topographic position [18,20,29,32]. The interactions among the topographical variables, 
biotic characteristics, and wind properties lead to complex patterns of cyclone effects across the 
landscape [25,32,35,36]. Thus, the spatial patterns of cyclone effects are likely to vary among different 
cyclone events. In fact, dissimilarities in ecological effects among multiple cyclones have been 
reported for various sites, including when several typhoons (local name of tropical cyclones in the 
Northwest Pacific) have occurred in a short time period with similar tracks [21,25,37–39]. Because 
topographical characteristics are key to cyclone effects, to better predict cyclone effects on forest 
landscapes it is important to examine which topographic properties have consistent relationships 
with cyclone disturbance and which ones are more variable. Few studies have compared landscape 
damage patterns of multiple cyclones [36,40], possibly due to the scarcity of cyclones over a period 
of time during which the changes in vegetation patterns are minimal except for those caused by 
cyclones in most regions. 

Cyclone effects on vegetation can be assessed through direct field observations (e.g., [16,41,42]) 
or the use of remote sensing techniques (e.g., [23,32,43]). Remote sensing offers the possibility of 
assessment of cyclone effects over broad areas [23,32,44], and the results have been used to formulate 
conservation recommendations [45–47]. Used in combination with other data, remote sensing can 
effectively identify broad spatial patterns of cyclone damage in relation to vegetation types and 
topographical properties [20,32,43,47] that could be otherwise difficult to assess with ground surveys. 
Some of the most commonly used remote sensing data are vegetation indices (VIs), which are derived 
from satellite or aircraft-collected spectral reflectance measurements.  

Many VIs have been developed to assess landscape vegetation patterns and dynamics [48], with 
each having its strengths and weaknesses [49]. VIs based on measurements using near-infrared (NIR) 
spectral bands, such as the Enhanced Vegetation Index (EVI), the Normalized Difference Vegetation 
Index (NDVI), and the Soil-Adjusted Vegetation Index (SAVI), have been widely used in vegetation 
assessments [48,50–52] although the shortwave infrared band of Landsat has also been shown to be 
effective for evaluating photosynthesis and forest canopy cover [53,54]. Relationships between VIs 
and forest characteristics are diverse and can be context-dependent; however, generally, the EVI is 
more closely related to canopy structure [55] and has a better relationship with photosynthesis than 
NDVI under high leaf area index (LAI, [56]) because EVI is less likely to saturate than NDVI at high 
vegetation cover [57–59]. The Normalized Difference Infrared Index (NDII), another NIR-based 
index, has been shown to be more sensitive than the NDVI to changes in vegetation water content 
[60], particularly at high vegetation cover [61,62]. The SAVI, also an NIR-based index, could be an 
option when the influence from exposed soil is a concern, such as in disturbed areas with low 
vegetation cover [63]. Disparate uses of VIs in studies of forest disturbances make cross-study 
comparisons difficult. Hence, a better comprehension of the comparability among frequently used 
VIs (i.e., NDVI, EVI, NDII) in relation to forest disturbance and recovery is needed for studies of 
vegetation disturbance ecology using VIs. Given the widespread occurrence and frequency of 
cyclones, they provide an opportunity to comparatively evaluate the effectiveness and consistency of 
VIs to capture vegetation disturbance and recovery within and across cyclones and forests. 
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The Fushan Experimental Forest (FEF) in north-eastern Taiwan provides a unique opportunity 
to study and compare the effects of multiple typhoons, as it was hit by nearly one typhoon per year 
between 1951 and 2005, including many years with multiple typhoons of different trajectories 
[42,64,65]. The frequent typhoon occurrence in this site has permitted the study of disturbance 
representativeness of large forest plots over a wider landscape [66], but understanding of damage 
variation and the comparability of different VIs across typhoons is lacking. Here, taking advantage 
of the FEF location, we use remotely sensed data to examine: 1) the consistency of patterns of typhoon 
damages among different typhoons; 2) the spatial patterns of typhoon damage in relation to cyclone 
properties (i.e., wind direction) and site topographical features (e.g., elevation, slope, and aspect); 3) 
the relationships between typhoon frequency and severity of typhoon damage; and 4) whether 
patterns of typhoon damage are consistent among different vegetation indices. 

2. Materials and Methods 

2.1. The Fushan Experimental Forest and Typhoons 

The 1000-ha FEF is a nature reserve located in northeastern Taiwan, approximately 25 km from 
the east coast of the island (Figure 1). Elevation ranges from 400 to 1400 m above sea level (asl). From 
1993 to 2004, mean annual temperature measured 18.2 °C, mean annual precipitation measured 4271 
mm, and mean relative humidity was 95% [67,68]. The forest is classified as an old-growth sub-
montane evergreen broadleaf forest dominated by trees species of Lauraceae and Fagaceae [67–69]. 

 
Figure 1. (A) Tracks and intensities (on the Saffir–Simpson scale) of the five studied typhoons affecting 
the Fushan Experimental Forest (FEF, circled in red). Arrows indicate the directions of typhoon 
movement. Typhoon tracks data from the NOAA IBTrACS archives [70,71]. (B) Topographic map of 
the FEF (reserve boundary shown in the red contour) with south facing aspects in gray. 

The FEF is regularly affected by typhoons between June and October, with an average of 0.74 
typhoons per year between 1951 and 2005 [64]. Five recent typhoons (Herb, Nari, Aere, Soudelor, and 
Dujuan) were selected based on the availability of Landsat images with less than 50% cloud cover of 
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the FEF within seven weeks of the typhoon passage ([23,72] but see [44,73]). We chose the temporal 
limit of seven weeks in order to minimize any changes in leaf phenology, which can occur within a 
matter of weeks. Although 50% cloud cover is substantial, it is difficult to find images with low cloud 
cover in cyclone-impacted regions [44], especially for the FEF, where it rains more than 220 days per 
year on average [74]. The five typhoons passed within 100 km of the FEF, and were all category 2 or 
3 on the Saffir–Simpson scale ([75], Figure 1). Given that each of the typhoon air masses were within 
100 km of the FEF, a distance envelope within which winds are strongest, the FEF was affected by all 
five typhoons. 

According to the IBTrACS cyclone tracks dataset [70,71], Typhoon Herb (1996, category 3) was 
the first typhoon of its season to cross the 100-km range envelope of the FEF. In contrast, Typhoon 
Nari (September 16th 2001) was preceded by Typhoon Toraji, which passed in proximity to the FEF 
on July 29th–30th (categories 3 to 1), and Tropical Storm Mindulle (July 4th to 5th 2004) preceded 
Typhoon Aere (August 8th 2004). No typhoon made landfall before Soudelor and Dujuan (2005) near 
the FEF, and the two typhoons were seven weeks apart (Figure 1). Among the studied typhoons, 
Typhoon Aere did not make landfall, but its center was 80 km from the FEF at its closest point. All 
typhoons were associated with high rainfall (690–1300 mm), and winds over 20 m s-1 at the FEF (Table 
1). Nari was the wettest typhoon, whereas Herb had the highest wind speed (Table 1). 

Table 1. Total rainfall (mm) and maximum wind speed measured at the Fushan Experimental Forest 
during the periods associated with the five typhoon passages. Data from the Fushan meteorological 
stations (Central Weather Bureau of Taiwan). 

Typhoon Dates Total Rainfall  
(mm) 

 Max Instantaneous Wind Speed  
(m s-1) 

Herb 1996-07-30 to 1996-08-01 720  36.8 
Nari 2001-09-16 to 2001-09-18 1300  25.1 
Aere 2004-08-24 to 2004-08-25 710  25.0 

Soudelor 2015-08-07 to 2015-08-08 790  21.8 
Dujuan 2015-09-28 to 2018-029 690  21.9 

The winds of the typhoons had different trajectories (Figure 2). The winds of Soudelor and 
Dujuan were mostly out of the south and west, whereas the winds of Nari and Aere were of northern 
origin (Figure 2). Although within each typhoon, at the hourly timescale, wind direction and speed 
were largely consistent, and daily data showed that the strongest wind gusts could come from 
different directions. 
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Figure 2. Mean hourly wind direction and speed (m s-1), and direction of daily strongest wind during 
five typhoons that affected the Fushan Experimental Forest. Hourly mean wind direction data was 
not available for Typhoon Herb. Percentages do not necessarily sum up to 100% as a wind speed of 0 
m s-1 is not shown. Data are from the Central Weather Bureau of Taiwan and were analyzed using the 
‘openair’ R package [76]. 

2.2. Satellite Images 

Landsat images were used to analyze vegetation cover change and recovery within the FEF in 
relation to typhoon disturbances. For each typhoon, pre- and post-disturbance images were taken 
within seven weeks of the typhoon passage to minimize phenological change in vegetation cover 
[77,78]. Images used to study vegetation recovery were taken during the growth season before 
typhoon passage, and one year later during at a comparable time with minimal cloud cover. 
However, the recovery associated with Typhoon Herb was not studied because of the lack of images 
with low cloud cover. Basic information on the images used in this study is given in Table 2, images 
used to study pre- and post-typhoon states are shown in Figure S1 in the Supplementary Material. 
Data from satellites Landsat 5, 7, and 8 were downloaded from the EarthExplorer website [79] as 
surface reflectance at 30 m resolution, with atmospheric and radiometric corrections performed with 
the LEDAPS (Typhoons Aere, Herb and Nari) or LaSRC (Typhoons Dujuan and Soudelor) algorithm. 
A digital elevation model (DEM) at a 30-m spatial resolution was downloaded from the ALOS World 
3D dataset from JAXA. Non-forested surfaces were identified with the Global Forest Cover dataset 
version 1.5 (GFC, [80]).
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Table 2. Basic information on Landsat images used in this study. Null cells were either covered by 
clouds or defined as non-forested using the Global Forest Cover dataset [80]. Pre- and post-
disturbance images are shown in Figure S1. 

Typhoon Image acquisition dates Sensors Resolution (m) Null cells 
(%) 

 disturbance recovery    

Herb 
1996-07-06 & 

08-23 
- 

TM5 30 19.4 

Nari 
2001-09-14 & 

10-08 
2001-06-18 & 

2002-06-29 
TM5, 
ETM+ 30 17.5 

Aere 2004-07-12 & 
09-30 

2004-07-12 & 
2005-07-15 

TM5 30 30.8 

Soudelor 2015-06-09 & 
08-12 2015-06-09 & 

2016-07-13 

OLI 30 48.8 

Dujuan 
2015-09-13 & 

11-16 OLI 30 33.9 

2.3. Pre-Processing 

Pre-processing of spectral data followed [81]. Rasters were topographically corrected using the 
C correction method with the topcor function of the ‘RStoolbox’ package [82] in R 3.6.1 [83]. Clouds 
and shadows were identified based on the Pixel QA band provided by the USGS, and derived from 
[84] with CFmask detection algorithm and visual inspection of true color composite (i.e., for Nari 
recovery) before being removed from all rasters. In addition, non-forested surfaces were identified 
and removed using the GFC dataset with a threshold of 75% following studies of other tropical moist 
forests [85,86]. 

2.4. Processing 

Three topographical variables were derived from the DEM using the terrain function from the 
‘raster’ R package [87]: slope steepness, slope aspect, and topographic position index (TPI). The TPI 
is derived from the type of terrain surrounding a particular cell, with values ranging between -10 and 
10. A TPI value of 0 indicates flat terrain surrounds the cell, whereas a cell surrounded by lower 
terrain has a positive TPI and a cell surrounded by more elevated terrain has a negative TPI. Aspect 
numerical values were converted into eight categorical variables (e.g., north, northeast, etc.) covering 
45° each, centered on the cardinal direction (e.g., from 22.5° to 67.5° for northeast). TPI values were 
converted into six slope positions following [88] as described in Table 3. Slope steepness was used to 
differentiate middle slope from flat slope areas, because the two had the same TPI value range (Table 
3). 

Table 3. Conversion thresholds of topographic position index (TPI) to slope positions and based on 
standard deviation (SD) of TPI and slope steepness following [88]. 

Slope position TPI Slope (°) 
Ridge SD < x – 

Upper slope 0.5 SD < x < SD – 
Middle slope -0.5 SD < x < 0.5 SD > 5 

Flat slope -0.5 SD < x < 0.5 SD < 5 
Lower slope -SD < x < -0.5 SD – 

Valley x < -SD – 
 
Four commonly used VIs were created using the surface reflectance rasters NDVI (Equation 1, 

[89]), NDII (Equation 2, [60]), EVI (Equation 3, [55]), and SAVI (Equation 4 [90]). Although NDVI has 
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been widely used in ecological studies (see reviews by [48,50,51]), it saturates faster than EVI and 
NDII at high biomass densities [55]. In contrast, EVI is more sensitive than NDVI to vegetation 
changes in areas with high biomass [91]. NDII has been shown to provide better monitoring of canopy 
defoliation and damage to forest structure [92–94], while SAVI reduces the soil effect [90]. The four 
indices are the products of four bands from the Landsat sensors: blue (B), red (R), NIR, and the first 
short-wave infrared band (SWIR1).  NDVI = 𝑁𝐼𝑅 − 𝑅𝑁𝐼𝑅 + 𝑅 (1) 

NDII =  𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1 (2) 

EVI = 𝐺 × (𝑁𝐼𝑅 − 𝑅)(𝑁𝐼𝑅 + 𝐶1 × 𝑅 − 𝐶2 × 𝐵 + 𝐿) (3) 

SAVI =  (1 + 𝐿)(𝑁𝐼𝑅 − 𝑅)(𝑁𝐼𝑅 + 𝑅 + 𝐿ଶ)  (4) 

In the equation of EVI, the coefficients for EVI are the gain factor, G = 2.5; the canopy background 
adjustment, L = 1; and two coefficients of aerosol resistance, C1 = 6 and C2 = 7.5 [95]. For SAVI, the 
canopy density adjustment L2 = 0.5 [90]. 

To measure the effects of typhoon disturbance, the variation in VI was calculated using Equation 
5. A negative ΔVI indicates a decrease in vegetation cover post-disturbance. ΔVI =  𝑉𝐼௣௢௦௧ିௗ௜௦௧௨௥௕௔௡௖௘ − 𝑉𝐼௣௥௘ିௗ௜௦௧௨௥௕௔௡௖௘ (5) 

2.5. Analysis of Disturbances among Vegetation Indices 

Typhoon effects on VIs were first analyzed separately for each of the five typhoons, in which 
only cloudy cells in the images related to the given event were excluded from the analysis. In contrast, 
only the shared non-clouded cells were used for cross-typhoon comparisons. For each typhoon, the 
ΔVI was compared to 0 with a one-sample Wilcoxon signed-rank test. Then, Spearman’s ρ was used 
to explore the relationships among the four ΔVIs (very weak < 0.2 < weak < 0.4 < moderate < 0.6 < 
strong < 0.8 < very strong) with the corr.test function from the ‘psych’ R package and p adjustment of 
Bonferroni for multiple comparisons [96]. In addition, the same test was used to study the correlations 
between pre-disturbance state (𝑉𝐼௣௥௘ିௗ௜௦௧௨௥௕௔௡௖௘) and the ΔVIs to examine if the changes in VIs are 
related to pre-disturbance vegetation conditions. 

Across all typhoons, correlations between individual ΔVI (e.g., ΔNDVI among the five 
typhoons) were tested with Spearman’s ρ to examine the consistency of vegetation damage detection 
among different VIs. Furthermore, to assess the effects of each typhoon disturbance on vegetation, 
coefficients of variation (CV) of each VI before and after disturbances were compared through a 
bootstrapped comparison of means (5000 iterations) using Equation 6. 

 

2.6. Typhoon Damages and Topography 

The relationships between ΔVIs and topographical variables were analyzed with ordinary least-
squares (OLS) regression models, which are commonly used in forest ecology [97–99], including 
elevation and slope as continuous parameters, and TPI and aspect classes as ordinal variables. The 
number of cloud free pixels across all the images used for model construction was 4593. 

2.7. Disturbance Frequencies and Intensity 

𝐶𝑉௣௢௦௧ିௗ௜௦௧௨௥௕௔௡௖௘ − 𝐶𝑉௣௥௘ିௗ௜௦௧௨௥௕௔௡௖௘ (6) 
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Damage frequency was defined as the number of typhoons (out of 5) affecting a particular cell. 
Small variations in VI unrelated to wind damage may cause negative values; therefore, a more 
conservative threshold than < 0 was used to identify typhoon-damaged cells (Equation 7). Only 
ΔNDII and ΔEVI were used in this analysis, whereas ΔNDVI and ΔSAVI were not included because 
of their moderate-to-strong correlations with ΔNDII and ΔEVI (ρ values ranging from 0.48 to 0.97). 
To assess if more frequently disturbed cells (i.e., those with frequencies of 4 or 5) were also more 
severely disturbed (had more negative ΔVI), mean ΔVIs among the six frequency classes were 
compared using the multiple comparisons procedure described by [100] for unbalanced designs with 
unequal variances with the ‘multcomp’ [101] and ‘sandwich’ [102,103] packages. Similarly, TPI-
derived classes as well as aspect classes were compared to examine if cells containing certain 
topographical features were more frequently affected by typhoons. Relationships between elevation 
and slope with damage frequencies were tested using OLS regressions. ΔVI < mean௏ூ − 0.5 × SD௏ூ (7) 

2.8. Vegetation Recovery 

Forest canopy recovery following Typhoons Aere, Nari, and Soudelor–Dujuan was analyzed by 
comparing an image of the FEF before disturbance to an image taken a year later during the same 
season (i.e., after disturbance, Table 2) through bootstrapped comparisons on means (5000 iterations). 
Typhoons Soudelor and Dujuan, which were only seven weeks apart, were studied together, as it 
was not possible to separate their recovery. Typhoon Herb could not be included in the recovery 
analysis due to the lack of images with low cloud cover following the typhoon. 

3. Results 

3.1. Vegetation indices, typhoons, and the effect of prior vegetation cover 

The four VIs all significantly decreased after the five typhoons (one sample Wilcoxon, V = 63407 to 
42679021, all p-values < 0.001, sample size = 6361 to 10128) except for the significant increase of NDII, EVI, 
and SAVI associated with Typhoon Herb (all p-values < 0.001, Table 4). Compared to the pre-typhoon VI 
values, the decrease was greatest for Dujuan and smallest for Aere and Soudelor (Table 4). 

Table 4. Average change (standard deviation) in vegetation indices (VIs) over five typhoon intervals 
for the Fushan Experimental Forest. ΔVIs are calculated as the difference between post- and pre-
typhoon values for five typhoons, so negative values indicate vegetation loss (Equation 5). Averages 
are calculated on variable portions of the Fushan Experimental Forest as the cloud cover varies among 
the images used to study typhoon events (see Table 2). 

 Vegetation change 
Typhoon ΔEVI ΔNDII ΔNDVI ΔSAVI 

Aere -0.021 (0.047) -0.006 (0.034) -0.012 (0.027) -0.029 (0.038) 
variation (%) -3.39 -1.18 -1.39 -5.34 

Dujuan -0.121 (0.057) -0.044 (0.031) -0.012 (0.034) -0.089 (0.041) 
variation (%) -19.87 -12.09 -1.19 -16.23 

Herb 0.048 (0.099) 0.008 (0.045) -0.035 (0.067) 0.014 (0.423) 
variation (%) 11.06 3.31 -4.01 4.01 

Nari -0.046 (0.050) -0.034 (0.037) -0.044 (0.071) -0.052 (0.040) 
variation (%) -8.62 -9.87 -5.51 -12.50 

Soudelor -0.010 (0.045) -0.017 (0.027) -0.022 (0.033) -0.010 (0.037) 
variation (%) -1.34 -4.40 -2.52 -1.55 

Correlations among ΔVIs were significant for all typhoons, although they varied in strength (Table 
5). All the correlations were positive except for those between ΔEVI–ΔNDVI and ΔEVI–ΔNDII. Most of 
the correlations were weak to moderate (ρ = 0.05-0.50) but the correlations between ΔEVI and ΔSAVI 
were generally strong (ρ up to 0.90) (Table 5). Pre-disturbance VIs and ΔVIs had significant negative 
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correlations in all cases (p < 0.001, Table S1). These relationships were in general weak for Typhoons 
Dujuan and Nari and considerably stronger for Typhoons Aere, Herb and Soudelor (Table S1). 

Table 5. Spearman’s correlations among the four ΔVIs measured over five typhoons for the Fushan 
Experimental Forest. All correlations are statistically significant (p-values < 0.01). ΔVIs are calculated 
as the difference between post- and pre-typhoon values (Equation 5). The relationships are studied 
on variable portions of the Fushan Experimental Forest as the cloud cover varied among the images 
(see Table 2). 

 Correlation (ρ) 

Typhoon ΔEVI-
ΔNDVI 

ΔEVI-
ΔNDII 

ΔEVI-
ΔSAVI 

ΔNDVI-
ΔNDII 

ΔNDVI-
ΔSAVI 

ΔNDII-
ΔSAVI 

Aere 0.59 0.23 0.90 0.28 0.64 0.31 
Dujuan 0.27 0.21 0.90 0.48 0.19 0.19 

Herb -0.23 -0.27 0.60 0.64 0.42 0.26 
Nari 0.10 0.05 0.48 0.56 0.80 0.55 

Soudelor 0.39 0.46 0.97 0.64 0.48 0.49 

3.2. Variation of ΔVIs among Typhoons 

The correlations of ΔVIs among typhoons were mostly negative between Typhoon Dujuan and 
other typhoons and mostly positive among other typhoons (Table S2). Most of the correlations were 
either weak, very weak or not significant. However, moderate positive correlations were detected for 
the ΔNDVI of Typhoon Herb–Soudelor, Herb–Nari and Soudelor–Nari (Table S2).  

3.3. Effects on Vegetation Heterogeneity 

Except for SAVI in relation to Typhoon Herb, typhoons led to a higher heterogeneity in VI 
values, as indicated by the significantly greater post-typhoon CV of all VIs except for NDVI for 
Typhoons Aere and Dujuan, wherein the CV did not change significantly (Figure 3). 

 
Figure 3. Changes in coefficient of variation (CV) of four vegetation indices following the five 
typhoons. Asterisks (*) indicate significant differences between pre- and post-typhoon CV based on 
bootstrap comparisons on means (5000 iterations). 
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3.4. Topography and Disturbance Severity 

Topographical variables differed in their ability to explain the variation of ΔVIs among the 
typhoons (Table 6 for Nari and Herb, Table S3 for other typhoons). Topography was a better predictor 
of ΔNDVI for typhoons Herb and Nari (adjusted R2 = 0.52 and 0.47, respectively) than it was for other 
ΔVIs (adjusted R2 ≤ 0.34). For typhoons Aere, Dujuan, and Soudelor that passed further from the FEF 
(Figure 1), topographical variables were poor predictors of ΔVI values (adjusted R2 ≤ 0.16). Elevation 
and slope were significant in explaining ΔVI variation in all cases except slope for ΔEVI and ΔSAVI 
for typhoon Dujuan (p > 0.05, Table 6 and Table S3); however, coefficients were small (β < 0.0002 for 
elevation, β < 0.008 for slope). The magnitude of ΔVI decreased with increasing topographic slope for 
all VI–typhoon combinations, except for ΔEVI with typhoons Herb and Nari, and ΔSAVI with 
typhoon Herb. However, increasing elevation led to either higher or lower damage (i.e., change in 
VI) depending on the typhoon in question, but the change in direction was consistent among VIs for 
each typhoon. Except for flat slopes, all TPI positions had positive and statistically significant (p < 
0.05) regression slope coefficients for Soudelor, Nari, Herb and Aere. On the other hand, Typhoon 
Dujuan showed negative relationships for all TPI positions except for flat slopes. Nevertheless, the 
sign of regression slope coefficients remained consistent among ΔVIs for each typhoon. The 
relationships between aspect and ΔVI values changed among typhoons, showing no clear pattern. 

Table 6. β Coefficients of ordinary least squares linear models between topographical variables and 
changes in vegetation index values (ΔVIs) associated with Typhoons Nari and Herb. Sample size of 
4593 (equal to the number of pixels from analyzed Landsat images). Significance levels are shown 
with † (p < 0.05), ‡ (p < 0.01), and * (p < 0.001). Only the first non-zero value is shown, complete results 
for the five typhoons are in Table S3. 

Topography 
Nari Herb  

ΔEVI ΔNDII ΔNDVI ΔSAVI ΔEVI ΔNDII ΔNDVI ΔSAVI 
Elevation (m) 0.00005* 0.00002‡ 0.00008* 0.00006* 0.0002* 0.0001* 0.0002* 0.0002* 

Slope (°) 0.0006* −0.001* −0.002* −0.0008* 0.002* -0.0007* -0.001* 0.0002* 
TPI category        

Lower slope −0.008 0.003 0.007 0.003 0.02† 0.02* 0.02* 0.02* 
Middle slope −0.005 0.003 0.008 0.005 0.03* 0.03* 0.02* 0.02* 

Ridge −0.0005 0.0004 0.004 0.008‡ 0.03* 0.03* 0.02* 0.02* 
Upper slope −0.002 0.002 0.005 0.006† 0.03* 0.03* 0.02* 0.02* 

Valley −0.008 0.0007 0.003 0.0001 0.01 0.02* 0.01* 0.01* 
Flat slope - - - - - - - - 
Aspects         

North 0.007‡ −0.03* −0.07* −0.03* 0.03* -0.03* -0.05* -0.005‡ 
Northeast −0.002 −0.02* −0.03* −0.01* 0.005 -0.006‡ -0.01* -0.003 
Northwest 0.02* −0.03* −0.09* −0.04* 0.05* -0.06* -0.09* -0.02* 

South −0.006‡ −0.0005 −0.001 −0.006* 0.02* -0.03* -0.04* 0.0004 
Southeast −0.003 −0.0002 0.006† −0.003 0.006  -0.007* -0.01* -0.001  
Southwest −0.006† −0.01* −0.03* −0.02* 0.05* -0.05* -0.07* -0.0005 

West 0.009* −0.02* −0.06* −0.03* 0.07* -0.06* -.1* -0.007* 
East - - - - - - - - 
R2 0.07899 0.2163 0.4684 0.2786 0.2222 0.3417 0.5179 0.2046 

Adjusted R2 0.07618 0.2139 0.4668 0.2764 0.2198 0.3397 0.5164 0.2021 

3.5. Disturbance Frequency and Severity 

For all typhoons but Dujuan, the more frequently affected cells had greater VI losses (Figure 4). 
Typhoon damage frequency varied with elevation and slope steepness. Elevation was negatively 
related to EVI-based damage frequencies (β = -6.71, p < 0.001, adjusted R2 = 0.016) but not to NDII-
based frequencies (p = 0.47). On the other hand, slope was positively related to EVI- and NDII-based 
frequencies (β = 0.32, adjusted R2 = 0.001, p = 0.01 for EVI; β = 2.16, adjusted R2 = 0.07, p < 0.001 for 
NDII). The proportion of damage frequency varied among aspects (Figure 5, Table S4). For NDII, all 
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aspects were significantly different in damage frequency (p < 0.001), except for south–east, northeast–
north, southwest–northeast, southwest–north, and west–northwest (p > 0.05, Table S4). For NDII, 
southwestern to northwestern aspects had the highest damage frequencies and southeastern aspects 
had the lowest disturbance frequency (Figure 5A). Considering EVI, northern aspects had more 
frequent typhoon damage than western and southern aspects, whereas there were no significant 
differences between other aspects (Table S4, Figure 5B). Among slope positions, according to EVI, the 
flat slope, lower slope, and valley positions had similar typhoon damage frequencies (Table S4); these 
three topographic positions were more frequently damaged than other positions. For EVI, ridge areas 
had lower typhoon damage frequency than all other slope positions (Table S4). With NDII-based 
frequencies, no significant differences were observed between rides and slope or among other 
topographical positions (p > 0.05 with adjustment, Table S4). 
 

 

Figure 4. ΔNDII (A) and ΔEVI (B) for five typhoons and across the six damages frequency classes. 
Different characters above boxes indicate significant differences between frequency classes based on 
multiple comparison of means with p-adjustment [100]. 

 
Figure 5. Percent of pixels of the eight aspects in different typhoon damage frequency classes (0 to 5) 
based on NDII (A), and EVI (B). 
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3.6. Recovery 

Vegetation cover had recovered in less than a year after Nari, as average VI values measured in 
June 2002 were equal to or greater than their values in June 2001 (positive 95% CIs, Figure 6). 
Similarly, all Vis, except NDII, registered vegetation recovery in less than one year after typhoons 
Soudelor–Dujuan (Figure 6). In contrast, EVI was the only VI showing recovery after Aere (Figure 6). 

 
Figure 6. One-year regeneration of the Fushan Experimental Forest as shown by the vegetation indices 
measured before typhoon passages and a year later at the same season. Regeneration of Typhoons 
Soudelor and Dujuan were merged as they passed during the same season; no satisfying images were 
available to study Typhoon Herb regeneration. All the differences between pre-typhoon and post-
typhoon images are significant based on 95% confidence intervals measured through bootstrapped 
comparisons on means. 

4. Discussion 

4.1. Consistency in the Damage Effects among Typhoons 

The consistent decrease in VI values following all five typhoons (with very few exceptions; see 
Table 4) suggest that all the VIs can generally capture typhoon-induced losses in vegetation cover 
[23,24,43,104–106]. However, we find weak correlations in ΔVIs between different typhoon events (ρ 
< 0.4, Table S2), indicating that typhoons range in their effects on vegetation cover. Although this is 
not surprising because typhoons differ in intensity, duration, trajectory and occurrence time relative 
to plant phenology, the inconsistency among vegetation indices highlights that results derived from 
one or a few disturbance events are unlikely to represent general trends in disturbance effects. Indeed, 
our results show that the successive Typhoons Soudelor and Dujuan did not have consistent effects 
on vegetation although they had comparable paths, wind speeds, and directions (Figure 1–Figure 2, 
Table 1). Additionally, the very weak negative correlations of the ΔVIs between typhoons Soudelor 
and Dujuan (Table S2) indicate that the two typhoons had different effects on the vegetation cover, 
as observed in other sites subject to successive cyclones [21,22,107].  
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Powerful cyclones, such as Hurricanes Hugo and Maria in Puerto Rico, Typhoon Herb in Taiwan, 
and Cyclone Larry in northeastern Australia, attract scientific study of their ecological effects 
[25,26,35,38,40,43,106–111]. This high prevalence of studies has advanced our understanding of 
cyclone ecology, especially in relation to the most powerful and damaging storms (reviewed by 
[12,14,112]). However, in this study, Typhoon Herb was considered to be the most powerful typhoon 
in several decades [113]. Typhoon Herb had the greatest wind speed among the five typhoons studied, 
while Nari was most intense in terms of precipitation. Considering these two storms, the resultant 
changes in vegetation index values (ΔVIs) were only weakly correlated. Future increases in the 
frequency of the most intense cyclones are predicted [114–116]. However, our results suggest that 
conclusions drawn from studies that document the effects of a single or a few intense cyclones are 
insufficient for predicting the effects of future cyclones. 

The fact that there were small or no changes in VIs associated with Typhoon Herb is somewhat 
surprising. In addition to the potential influence of image quality on our analyses, the timing of 
Typhoon Herb is probably the most important factor. Typhoon Herb occurred in the summer (late 
July) when the forest was in the middle of the main growing season, and the two images were 
approximately two months apart. Thus, plant growth could be substantial during the period, 
potentially confounding the detection of typhoon-caused decreases in vegetation cover by VIs. This 
contrasts with Typhoon Dujuan, which caused the largest decreases in VIs. Typhoon Dujuan 
occurred near the end of the main growing season (April to September) so that although the two 
images were also approximately two months apart, there was little vegetation growth during the 
period. As a result, typhoon-induced vegetation loss can be better detected with the VIs. Thus, image 
timing in relation to plant growth phenology should be considered when examining disturbance-
induced changes in vegetation cover using VIs. 

Not only were the overall effects inconsistent among typhoons, there was large variation in 
linear regression results, which showed that typhoon damage–topography relationships were 
inconsistent among typhoons (Table 6 and Table S3). Topography was better at explaining 
disturbance distribution across the landscape for Typhoons Herb and Nari, the typhoons that passed 
the closest to the FEF, but they were not the storms that caused the greatest degree of vegetation 
damage. This result suggests that topography–vegetation damage relationships vary with cyclone 
distance and that topography is a key determinant of vegetation damage only when typhoons are 
very close to the study site, despite the magnitude of the damage. It also suggests that factors other 
than cyclone distance determine the severity of typhoon-induced vegetation cover damage.  

Nevertheless, there were some consistencies across typhoons. First, the canopy generally 
recovered quickly as many VIs returned to their pre-disturbance values within a year (Figure 6). This 
result is consistent with the report of the rapid recovery of the FEF observed following Typhoon Bilis 
using NDVI [106]. However, recovery of a VI does not imply total canopy recovery as LAI and 
litterfall typically do not recover within a year of damage in the FEF [73]. Second, the relationship 
between high pre-disturbance NDVI and strong NDVI loss observed by [106] was also detected for 
all five typhoons in this study despite their differences in paths and intensities (Table S1). This pattern 
may be explained by the higher aerodynamic drag of dense canopies as suggested by [16], who 
reported a similar relationship between pre-disturbance LAI and LAI loss (see also [17]). Third, 
cyclones are disturbance agents which induce heterogeneity in forest landscapes [14,64]. Secondary 
tree falls and defoliation may have led to the increased heterogeneity observed following almost all 
typhoons examined here. Finally, most ΔVIs were positively correlated between typhoons (Table S2), 
except for Soudelor–Dujuan, suggesting that different typhoons could have similar effects although 
the strength of the relationships varied greatly among typhoons and VIs. 

4.2. ΔVIs in Relation to Topography 

The topography only explained a small proportion of the variation in vegetation cover change. 
As observed by [32], steeper slopes were associated with greater decreases of all VIs across all 
typhoons (Table 6 and Table S3), perhaps because of different wind exposures and soil stability (e.g., 
landslides, [117]). However, our results show that the relationships between vegetation damage and 
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other topographical variables changed among typhoons and VIs, even when typhoons had similar 
tracks and wind directions. Thus, observations from a single event should be generalized with 
caution, as they do not necessarily remain true for other cyclones. Indeed, complex interactions 
between wind and topography have occurred in the FEF, as leeward positions were more affected 
than eastern positions for Typhoon Nari but not for Dujuan (Figure 2, Table 6 and Table S3). Less 
exposed slopes may also offer little protection if the cyclone is particularly strong [40]. The overall 
low adjusted-R2 values indicate that factors other than topography (e.g., vegetation conditions and 
timing of typhoon disturbance) likely play a more important role in determining typhoon-induced 
changes in vegetation cover. 

4.3. Typhoon Disturbance Frequency 

The greater damage for more frequently than less frequently affected cells (Figure 4) is consistent 
with a study from a moist forest of Puerto Rico, in which trees sustaining heavy damages from 
Hurricane Hugo (1989) were more likely to be damaged again nine years later by Hurricane George 
[118]. The result is also consistent with the mostly positive correlations between ΔVI values among 
the different typhoons (Table S2). Although it is possible that sites with certain topographical features 
within the FEF are more prone to typhoon damage, this claim is not supported by the lack of 
consistent topographical damage patterns among typhoons (Table 6 and Table S3). Possibly, 
susceptibility to damage is more related to weakened vegetation in these sites (i.e., repeated 
disturbances). Further field-based research may help to separate the effect of forest characteristics, 
topography, and typhoon frequency on canopy damage at the FEF. 

The greater elevational signal in typhoon damage frequencies at lower than at higher elevations 
based on EVI fits the pattern of greater damage frequency at lower topographic positions (lower-
slope, valley) than other positions (e.g., middle- and upper-slope). It also supports results from field 
observations of greater typhoon effects at low than at high elevations along a 2300-m elevational 
gradient in central Taiwan [65]. It appears that the elevational pattern is consistent across spatial 
scales including variation in slope across the landscape, possibly because the intensity of typhoons 
declines quickly in rough topography as they move upward [65]. The differences in NDII and EVI 
sensitivity to vegetation characteristics may explain the different relationships of their damage 
frequencies with slope. As observed in Puerto Rico [36], different aspects had different disturbance 
frequencies, with northern aspects having significantly higher values. However, the relationship with 
the windward–leeward direction was less clear here, as western aspects (leeward in the FEF) also had 
high damage frequencies. The very rough topography at the FEF, with a mean slope of 38%, probably 
obscures relationships between slope, aspect and typhoon damage. 

4.4. Consistency among Vegetation Indices 

We did not detect any VI that was consistently the most sensitive across the five typhoons. EVI 
and NDII were considered particularly functional to measuring vegetation characteristics such as 
canopy structure [55] and water content [61,62]. However, in our study, they did not detect strong 
decreases in vegetation cover relative to pre-typhoon values for Typhoon Herb. Such differences may 
be the product of different damage variations across disturbance events, as reported for other sites 
[21,22,107]. It may also be due to the phenological change in leaf properties between pre- and post-
disturbance images [77,78], although effort was made to minimize such variation by selecting images 
from within seven weeks of typhoon events. 

Surprisingly, NDVI was the only VI that showed a decreasing canopy cover following Typhoon 
Herb, whereas it was the least practical index for Dujuan and Nari, despite its lack of sensitivity under 
high LAI [57–59]. NDVI was also the only VI that did not detect change in vegetation cover 
heterogeneity following Typhoons Aere and Dujuan (Figure 3). Overall, NDVI is less sensitive to 
vegetation cover change in the FEF than the other Vis, as reported for other sites [92–94,119], and its 
sensitivity varied with typhoon events or images. Large variability between VIs in their responses to 
disturbance also took the form of varying correlation strength and direction between and within 
typhoon events (Table 5). However, ΔVIs based on the same spectral bands, such as ΔEVI–ΔSAVI, 
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had stronger correlations than in other cases (e.g., ΔEVI–ΔNDII). The disparity between ΔVIs for a 
given typhoon suggests that cross-study comparisons of disturbance effects based on several or 
different VIs could be problematic. 

ΔVIs shared some consistencies, nonetheless, as most VIs indicated increasing heterogeneity, 
and varied somehow similarly with elevation, slope, and TPI-derived classes for each typhoon (Table 
6, Table S3). In addition, both ΔNDII and ΔEVI detected increasing severity for more frequent canopy 
damage. 

Our study has several constrains. First, although we compared the consistency among different 
VIs, we could not identify which VI was more accurate in detecting vegetation changes caused by 
typhoons due to the lack of ground truthing. Conducting ground truthing is difficult, because 
although the beginning and the end of typhoon seasons are relatively well understood, typhoon 
events themselves are unpredictable, hence it is difficult to coordinate ground surveys across the 
studied landscape without knowing whether a disturbance will occur and where clouds would be 
present on the satellite images. Although it was possible to conduct ground truthing for past 
disturbance events, we strongly recommend routine ground surveys on several widely spread plots 
for studies that aim to assess disturbance effects on vegetation whenever possible. Such ground 
truthing could help to identify which VI would provide most accurate detection of disturbance-
induced vegetation changes. 

Second, some of our results may have been affected by cloud obstruction in analyzed images, 
which is substantial for all images used in this study (17.5%–48.8%). A previous study showed that 
cloud contamination does not distribute across the FEF, with more cloud cover at higher elevations 
[66]. Because typhoon-induced vegetation change varied with elevation (Table 6), the observed 
topographical patterns of vegetation change are likely affected to some degree by the non-random 
cloud contamination. Unfortunately, cloud contamination is common in the FEF and most humid 
forests. In fact, cloud cover prevented the inclusion of Typhoon Herb in our analyses of vegetation 
recovery. Third, ideally, images should be derived from the same sensor as different sensors vary in 
the width of their spectral bands [120] and radiometric calibrations [121,122]. However, we were 
constrained by the availability of high-quality (low cloud contamination) images because we studied 
five typhoons spanning over two decades. With the rapid advancement of remote sensing, high-
quality images from the same sensor should be increasingly available. 

5. Conclusions 

Comparison of the effects of five major typhoons affecting the Fushan Experimental Forest (FEF) 
showed substantial differences as well as some consistency in their effects. First, while typhoons all 
led to decreases in vegetation index (VI) values, the magnitude of change (ΔVIs) differed among 
events. The variability of ΔVIs among typhoons may be the product of complex interactions of their 
characteristics with landscape topography and the biotic conditions when the forest was disturbed 
(e.g., recovering from previous disturbance, soil moisture). Indeed, topography alone did not explain 
variation in ΔVIs among typhoons, and its explanatory power varied among the different indices. 
However, all typhoons shared the same positive relationship between damage severity and pre-
disturbance vegetation condition, and all typhoons resulted in increased vegetation heterogeneity. 
Hence, conclusions drawn from the remote sensing studies of one typhoon may or may not stand for 
other typhoons in the same landscape, depending on the aspects of the effects under concern. Second, 
observation of greater disturbance severity for more frequently damaged cells of the FEF shows that 
some sites are more prone (i.e., have decreased resistance) to disturbances than others. On the other 
hand, the landscape generally has high resilience in order to maintain its forest cover over the many 
centuries of typhoon disturbance. Third, the four vegetation indices had different relationships with 
canopy cover damage, probably because of their different sensitivities across the light reflectance 
spectrum. The Normalized Difference Vegetation Index (NDVI) was, overall, less sensitive to change, 
which supports the findings of previous studies pointing to its saturation and overall limited 
sensitivity under high-biomass forest conditions. The Soil-Adjusted Vegetation Index (SAVI) and the 
Enhanced Vegetation Index (EVI) were highly correlated, but EVI was less related to the other two 
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indices. Although the Normalized Difference Infrared Index (NDII) and EVI had the same change in 
direction after the five typhoons, they differed in the magnitude of change. Hence, we suggest using 
them together as complementarity Vis, because NDII and EVI are, respectively, based on short-wave 
infrared and near-infrared, making them sensitive to different characteristics of vegetation.  

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/12/10/1654/s1. 
Figure S1: true-color composites of the forest cover and clouds (white) of the Fushan Experimental Forest (FEF, 
delimited in red) before and after each of the five studied typhoons. Table S1: Spearman's ρ for the correlation 
between pre-disturbance VIs (VIt0) and ΔVI associated with the typhoons. Table S2: Spearman’s ρ (p-value) 
between corresponding ΔVIs of the five typhoons (p adjustment of Bonferroni). Table S3: β Coefficients of 
ordinary least squares linear models between topographical variables and changes in vegetation index values 
caused by Typhoons Aere, Herb, Nari, and Soudelor in relation to topographical variables: elevation, terrain 
slope, TPI-derived position, and aspects (converted into eight cardinal directions). Table S4: multiple 
comparisons on mean disturbances for different aspect- and topographical position index (TPI)-derived 
categories.  
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