Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species

Han Yan1,2, Grégoire T. Freschet3, Huimin Wang1,2, James Aaron Hogan4,5, Shenggong Li1,2, Oscar J. Valverde-Barrantes4, Xiaoli Fu1,2, Ruili Wang6, Xiaoqin Dai1, Lei Jiang1, Shengwang Meng1, Fenting Yang1, Miaomiao Zhang7 and Liang Kou1,2

1Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; 2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100091, China; 3State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Author for correspondence:
Liang Kou
Email: koul@igsnrr.ac.cn

Received: 20 November 2021
Accepted: 18 February 2022

New Phytologist (2022)
doi: 10.1111/nph.18066

Key words: absorptive root, arbuscular mycorrhizas and ectomycorrhizas, root economics, root trait variation, trait interplay, trait–function linkage.

Summary

- The root economics space (RES) is multidimensional and largely shaped by belowground biotic and abiotic influences. However, how root–fungal symbioses and edaphic fertility drive this complexity remains unclear.
- Here, we measured absorptive root traits of 112 tree species in temperate and subtropical forests of China, including traits linked to functional differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) hosts.
- Our data, from known mycorrhizal tree species, revealed a ‘fungal-symbiosis’ dimension distinguishing AM from ECM species. This divergence likely resulted from the contrasting mycorrhizal evolutionary development of AM vs ECM associations. Increased root tissue cortical space facilitates AM symbiosis, whereas increased root branching favours ECM symbiosis. Irrespective of mycorrhizal type, a ‘root-lifespan’ dimension reflecting aspects of root construction cost and defence was controlled by variation in specific root length and root tissue density, which was fully independent of root nitrogen content. Within this function-based RES, we observed a substantial covariation of axes with soil phosphorus and nitrate levels, highlighting the role played by these two axes in nutrient acquisition and conservation.
- Overall, our findings demonstrate the importance of evolved mycorrhizal symbiosis pathway and edaphic fertility in framing the RES, and provide theoretical and mechanistic insights into the complexity of root economics.

Introduction

Roots have evolved diverse resource acquisition strategies since the emergence of the first land plants (Ma et al., 2018; Bergmann et al., 2020). Belowground, multiple plant traits, representing aspects of root architecture, morphology, anatomy, physiology or associations with other organisms, concomitantly define the capacity of plants to acquire resources (Freschet et al., 2021b). Although a number of trade-offs define and limit the set of trait values possible to ensure plant viability and success (Weigelt et al., 2021), and these trade-offs are further modulated by environmental constraints (Laughlin et al., 2021), plants show a remarkable diversity of trait values and trait combinations to achieve similar levels of resource acquisition and growth (Freschet et al., 2018; Guerrero-Ramirez et al., 2021). Some of this diversity can nonetheless be summarized using trait-based root economics frameworks (Kong et al., 2014; Valverde-Barrantes et al., 2015; Bergmann et al., 2020). Recent advances have demonstrated the merits of considering a multidimensional root economics space (RES), yet the proposed patterns are highly variable among studies (Kong et al., 2014; Valverde-Barrantes et al., 2015; Weemstra et al., 2016; Liese et al., 2017; Bergmann et al., 2020). This is because roots inhabit in complex soil matrix and interact with both biotic (e.g. mycorrhizal fungi) and abiotic (e.g. nutrient availability) factors that shape root economics in contrasting ways across plant functional types, environments and types of plant–fungi and plant–bacteria symbioses (Bardgett et al., 2014; Valverde-Barrantes et al., 2015; Weemstra et al., 2020). Our conceptual and practical understanding of how such factors, particularly mycorrhizal symbioses and edaphic fertility, drive the complexity of root economics remains largely incomplete (Bergmann et al., 2020; Ding et al., 2020).
Over 90% of woody plant species on Earth have developed symbioses with mycorrhizal fungi (Brundrett, 2009; Bonfante & Genre, 2010). Arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) roots are the two most common types of symbioses with contrasting evolutionary history and symbiotic (intracellular vs intercellular) pathways (Brundrett, 2002; Tedersoo et al., 2018; Tedersoo & Bahram, 2019). By contrast, the more recently evolved ECM fungal association forms a sheathing mantle and Hartig net, where fungal hyphae grow around and between epidermal and cortical cells of roots (Smith & Read, 2008; Martin et al., 2016), although for ECM gymnosperms (e.g. Pinaceae) the inner hyphae can reach deeper into cortical cells (Brundrett, 2002; Genre et al., 2020). Ectomycorrhizal fungi have partly evolved from their saprotrophic ancestors (i.e. basidiomycetes and ascomycetes) and exude hormones such as ethylene and auxin (Raudaskoski & Kothe, 2015; Martin et al., 2016; Tedersoo & Brundrett, 2017), which enable roots to proliferate and branch for increased fungal colonization (Fig. 1; Comas et al., 2014; van der Heijden et al., 2015). By contrast, AM species mainly regulate the extent of root cortical tissue to provide the main habitat for AM fungi (Fig. 1). This fundamental divergence implies contrasting influences of mycorrhizal type on root economics. For example, while a trade-off between mycorrhizal colonization intensity and mean root diameter has been clearly established for AM species, such evidence is scarce for ECM species (Kong et al., 2014; Bergmann et al., 2020; Wambgsass et al., 2021). As such, it has been hypothesized instead that a higher branching intensity (BI, i.e. the number of root tips on a given length unit of parent root) of absorptive roots may be the key trait responsible for an increased probability of colonization by ECM fungi, but this remains to be tested on a comprehensive range of species and traits associated with symbiotic pathways.

At the global scale, plant roots differ in their strategies to acquire and conserve edaphic resources along at least two major axes (or functions, Fig. 2a) (Bergmann et al., 2020). A first axis is the ‘conservation gradient’ ranging from roots with high root tissue density (RTD) that show a slow resource return on investment but are long-lived and well-protected, to roots with a high nitrogen (N) content and metabolic rate for fast resource return on investment but a short life span. A second is the ‘collaboration gradient’ ranging from a ‘do-it-yourself’ soil exploration strategy, characterized by high specific root length (SRL) to an ‘outsourcing’ resource strategy where carbon (C) is allocated to the mycorrhizal partner, typified by greater root diameter and cortical fraction. We propose that this simple view of the ‘collaboration’ gradient does not adequately reflect the root functional differentiation among woody AM and ECM species, and therefore propose a more refined ‘fungal-symbiosis’ gradient. Particularly, while AM associations tend to rely on increasing root diameter and cortex

Fig. 1 Schematic depiction of divergent symbiosis pathway of arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) roots. (a) In AM roots, fungal hyphae (depicted in red) principally from glomeromycota and endogonomycetes grow between and penetrate root cortical cells to form intracellular arbuscules and vesicles. Thus, AM plant roots tend to facilitate mycorrhizal symbiosis by expanding cortical space for increased habitat availability for AM fungi. In ECM roots, fungal hyphae (depicted in blue) principally from basidiomycetes and ascomycetes and stemming from saprotrophic ancestors grow attached to the epidermal cell of lateral roots to form a sheathing mantle and then develop an intercellular ‘Hartig net’ around root cortical cells (ECM angiosperms) or around and into cortical cells (ECM gymnosperms). (b) For AM species, mycorrhizal colonization intensity can be approximated by the proportion of total absorptive root length colonized. (c) For ECM species, mycorrhizal colonization intensity is rather a fungal occurrence frequency on root tips. Ectomycorrhizal fungal taxa exude hormones such as ethylene and auxin to stimulate proliferation of lateral roots, thereby ECM species tend to regulate root branching structure hosting mycorrhizal fungi. The left diagram is inspired by Bonfante & Genre (2010).
space, ECM associations are typically represented by thin, highly branched roots with many root tips (Comas et al., 2014). Therefore, a trade-off in symbiotic root traits can be envisioned to exist between the ‘symbiotic traits’ of BI and root diameter with opposite trends between symbiotic groups.

Here, we contend that the relevance of certain root traits to multiple functions within the RES (e.g. root diameter and SRL can be conceptually linked to both RES axes) not only limits our capacity to apply a singular interpretation to axes of RES variation but also likely leads to substantial differences in local representations of the RES (e.g. across biomes or plant functional types). Particularly, the degree of variation observed in root trait strategies along axes of the RES seems to depend on the degree of environmental variation studied. Along the conservation gradient, root lifespan has been linked to changing availability of soil nutrients, particularly N (Eissenstat & Yanai, 1997; McCormack & Guo, 2014), suggesting an often ignored but positive role of root lifespan (as well as associated changes towards high RTD, root diameter and C/N, and low SRL) in nutrient acquisition (Ryser, 1996; Eissenstat et al., 2000; Withington et al., 2006; McCormack et al., 2012). Along the proposed ‘fungal-symbiosis’ gradient, plants would rely on different symbiotic pathways with mycorrhizal fungi to forage immobile soil P (van der Heijden et al., 2015; Liu et al., 2018), via regulating root cortex space for AM species and branching tips for ECM species (Comas et al., 2014). Thus, the diversity of belowground strategies along RES axes depends to some extent on the availability and mobility of limiting nutrients, such as N and P in soil, which also interacts with mycorrhizal association type.

To reveal how root–fungal symbiotic pathways and edaphic fertility drive root economics of woody plants, we sampled absorptive fine roots (the resource-acquiring first- and second-order roots within root systems) of 112 tree species consisting of 77 AM species and 35 ECM species spanning two temperate forests and two subtropical forests in China. We considered seven root economics traits (SRL, RTD, root diameter, cortex thickness (CT), BI, root N concentration (RN) and root carbon concentration (RC)) that are representative of root construction strategy, root-fungal symbiotic pathway and resource return on investment (i.e. soil-derived nutrient acquisition per plant-derived C allocation) at the root system level (Kong et al., 2014; Bergmann et al., 2020). Compared with intraspecific variation, interspecific variation in root traits is often large (Hogan et al., 2020). Moreover, among taxa root traits are highly phylogenetically structured, evidencing how evolution has largely determined root functional differences (Valverde-Barrantes et al., 2013, 2017). Based on phylogenetically informed analyses, we hypothesized that both AM and ECM tree species would fit within a bidimensional RES, represented by:

1. a resource ‘conservation’ gradient describing the trade-off between slow vs fast resource return on investment dominated by traits associated with root lifespan, independent of mycorrhizal types;
2. a ‘fungal-symbiosis’ dimension that not only accounts for the dichotomy between species adopting a ‘do-it-yourself’ vs an ‘outsourcing’ strategy of soil resource acquisition but also represents differences between mycorrhizal types, with strategies ranging from large root diameters and CTs for AM species to high BIs for ECM species.

Based on current knowledge of tree species root trait distributions along soil resource gradients, we further hypothesized that:

3. interspecific root trait variation along the ‘root-lifespan’ dimension is more associated with soil N availability, while variation along the ‘fungal-symbiosis’ dimension is more associated with soil P availability for both mycorrhizal types.
Materials and Methods

Study site and species selection

This study was conducted in four temperate and subtropical forests of China. The four forests were located at: (1) Menglun forestry station (41°52′–42°01′N, 116°49′–116°59′E) in Hebei province; (2) northern slopes of Taibai Mountain (33°49′–34°10′N, 107°19′–107°58′E) in Shaanxi province; (3) Qianyanzhoun Ecological Station (26°44′39″N, 115°03′33″E) in Jiangxi province; and (4) Yangming Mountain (25°39′26″N, 114°18′49″E) in Jiangxi Province. The sampling sites range from 102 to 2100 m above sea level in elevation, with mean annual temperature ranging from 2°C to 17.9°C, and mean annual precipitation of 470–1587 mm (Kou et al., 2019; Yan et al., 2019; Jiang et al., 2021). The species we selected are representative of the local plant community at each site. In total, we sampled 366 individuals of 112 woody species and then categorized these species into 77 AM (from 58 genera of 34 families) and 35 ECM species (from 17 genera of seven families) regarding symbiotic guild assignments of Steidinger et al. (2019). Each site has a unique set of species, as described in Supporting Information Table S1.

Field sampling and processing

The field sampling was carried out in autumn of 2018 and 2020. Samples from each species were collected from at least three mature healthy trees with similar diameter at breast height (DBH) to minimize the potential influences of intraspecific difference (< 5 cm in DBH) on root traits. The individuals for each species were spaced at least 10 m apart to ensure sampling independence. Surface soil (0–20 cm) was excavated around the stems of the trees to expose lateral roots. Intact roots were cut from the main lateral roots, and the attached soil was cleared following the procedure described by Guo et al. (2008b). At least eight intact distal root branches, including more than five root orders, were sampled. Each root sample was then divided into two subsamples. One subsample was gently washed in deionized water to remove adhering organic matter and was immediately fixed in formalin–acetic acid–alcohol solution (90 ml 50% ethanol v/v, 5 ml 100% glacial acetic acid v/v and 5 ml 37% methanol v/v) for measuring anatomical traits. The other subsamples were placed into valve bags, incubated with ice bags and then stored at −20°C for later dissection and analyses of morphological and chemical trait (Guo et al., 2008b). Approximately 1 kg of soil was also collected during root sampling (0–20 cm) from under each tree using a shovel. All soil samples were sieved (2-mm mesh) to remove roots and visible organic particles and stored at 4°C for later laboratory analysis. Soil samples were generally extracted and analysed within 1–2 wk after sampling to minimize the influence of storage time on available nutrients (Bailey et al., 2022).

Root trait measurements

The first set of root subsamples was dissected based on the protocol described by Pregitzer et al. (2002) for measuring morphological root traits. Specifically, three root clusters, including at least five root orders, were randomly chosen and dissected with fine forceps on a plate filled with deionized water as described by Guo et al. (2008). The absorptive roots (1st- and 2nd-order roots) were used in this study because they are belowground resource-acquiring units (Guo et al., 2008b; McCormack et al., 2015; Kou et al., 2018). Root diameter was measured using WinRHIZO Arabidopsis v.2012b (Regents Instruments Inc., Quebec City, QC, Canada) by analysing images of root samples scanned on an Epson Expression 10000 XL scanner (Seiko Epson Corp., Suwa, Japan) at a resolution of 400 dpi. Given the difficulties in distinguishing mycorrhizal structures from roots, the mycorrhizal mantle was included in the measurement of root diameter for ECM species. Specific root length was calculated as the ratio of root length to root dry mass, and RTD was calculated as the ratio of root dry mass to root volume. Root volume was recalculated from WinRHIZO outputs as the sum of averages of all diameter classes (Freschet et al., 2021a). Referring to the calculation of BI for the 1st-order roots (Kong et al., 2014), we calculated BI of absorptive roots as the number of their root tips divided by the total root length of their parent roots (i.e. the 3rd-order roots). All absorptive roots were weighed, oven-dried and then ground to fine powders using a Spex 8000-D mixer mill (Spex, Edison, NJ, USA) for measuring the concentrations of C and N using a Vario EL Cube elemental analyser (Elementar, Hanau, Germany). Root trait values were averaged across all sampled replicates for each species.

The second subsample set was also dissected in the same manner as morphology and chemistry for measuring anatomical traits. More than 20 segments were randomly selected from the absorptive roots, stained with safranin-fast green, dehydrated in a set of alcohol solutions and embedded in paraffin. 8-μm-thick root sections were prepared, photographed using a compound microscope (DM2500, DFC450; Leica, Wetzlar, Germany) and measured for CT using ImageJ (NIH Image, Bethesda, MD, USA).

Soil measurements

Soil total C and N concentrations were determined using the Vario El Cube elemental analyser described above. Approximately 13–15 g of soil was used for the extraction (50 ml of 2 mol l⁻¹ KCl) of mineral soil N (NH₄⁺ and NO₃⁻). The concentrations of NH₄⁺ and NO₃⁻ were determined using a Flow Auto Analyser (Autoanalyser III; Bran + Luebbe, Norderstedt, Germany). Available P from acidic and alkaline soil samples was extracted, respectively, using HCl/NH₄F and NaHCO₃, and then determined colorimetrically using an ascorbic acid molybdate analysis on a Flow Auto Analyser. Soil properties were averaged across all soil samples taken from each tree replicates.

Data analyses

The taxonomic binomials of all species were verified using The Plant List (TPL, http://www.theplantlist.org/). Plant family-level clades were determined according to APG4 (The Angiosperm Phylogeny Group et al., 2016) for angiosperms and TPL for gymnosperms. Phylogenetic trees were constructed, respectively, for all species, AM species and ECM species using v.phylomaker.
(Jin & Qian, 2019), a package designed to generate phylogenies for vascular plants in R software (v.3.6.3; R Core Team, 2020), and v.phylomaker uses the mega-tree derived primarily from GBOTB (GenBank taxa with backbone provided by Open Tree of Life v.9.1) for seed plants (Smith & Brown, 2018) and Zanne et al.’s (2014) phylogeny for pteridophytes (Jin & Qian, 2019). The phylogenetic tree across all species was then visualized with the annotation of plant phylogeny, mycorrhizal type and distribution of core traits (BI, CT, root diameter, RTD and SRL) using the ggtree package (Yu et al., 2017) in R. Phylogenetic polytomies were resolved by the ’multi2di’ function using the ape package (Paradis & Schliep, 2019) in R. We calculated Blomberg’s parametric K to evaluate the phylogenetic conservatism for each absorptive root trait using the picante R package (Blomberg et al., 2003; Münkemüller et al., 2012). A significant phylogenetic signal indicates that the trait is constrained by phylogeny, and a higher value of Blomberg’s K indicates higher phylogenetic conservatism (Blomberg et al., 2003). The variation in each root trait across all species was estimated by calculating the means, minima and maxima and the coefficient of variation (CV). Additionally, bivariate relationships among root traits were assessed using both linear and phylogenetic generalized least square models in the stats and caper R packages (Freckleton et al., 2002; Orme et al., 2013) for all species, and for AM and ECM species, separately. Relationships between root trait and soil nutrient availability were assessed using Pearson’s correlations for all species and the two mycorrhizal groups.

Given the influence of phylogeny on traits, we performed phylogenetically informed principal component analysis (pPCA) to account for the dependency in root trait variations for all 112 species across the phylogeny. The pPCA was implemented with Pagel’s lambda correlation structure using the ‘phyl.pca’ function of the phyltools package (Revell & Collar, 2009; Uyeda et al., 2015) in R. The pPCA was conducted for seven key root traits: BI, CT, root diameter, RTD, SRL, RN and RC that are previously reported as drivers of the trade-offs between fungal dependence and root construction strategies at global levels (Brundrett, 2002; Kong et al., 2014; Bergmann et al., 2020). To check for the effect of potential contamination of roots by soil minerals (potentially different among species, e.g. between ECM and AM species) on the general trends observed in this study, we carried out the same analyses with RTD data corrected for C concentration (i.e. expressed on a root C mass basis rather than root dry mass basis). Because the observed trends were the same, only the noncorrected data were displayed. Factor loadings of pPCA on corrected data can be found in Table S2.

To test for the difference between AM and ECM species on ‘fungal-symbiosis’ dimension, we first performed an ANOVA on the second axis scores of AM vs ECM species based on the result of pPCA for all species. We then repeated pPCA for AM (n = 77) and ECM (n = 35) species, respectively. Given the contrasting symbiosis pathways between ECM angiosperms and ECM gymnosperms from the Pinaceae family (Brundrett, 2002), we further performed this analysis for ECM angiosperms (n = 28) by removing Pinaceae species (n = 7). Lastly, linear regressions were used to examine the relationships of soil nutrients with pPCA loadings on the ‘root-lifespan’ dimension (PC1) and the ‘fungal-symbiosis’ dimension (PC2) for all species, AM species and ECM species. To meet the assumption of normality, we log10-transformed data for each root trait in bivariate–correlation analyses and pPCAs.

Results

Variations in root traits and plant phylogeny influences

Across 112 tree species (Table S1), we found patterns of variation in absorptive root traits (Table 1) that differ from previously published global patterns of trait variation, as available from the GRooT database (Guerrero-Ramírez et al., 2021) (Table S3). The symbiotic root traits (BI and CT) varied considerably, with BI ranging from a minimum of 0.77 cm−1 of Cinnamomum porrectum (AM species) to a maximum of 12.80 cm−1 of Castanea mollissima (ECM species) (coefficient of variation (CV) = 63.9% vs 60.2% in the GRooT database). There was an eightfold variation in CT, ranging from 0.04 mm of C. mollissima (ECM species) to 0.32 mm of Diospyros lotus (AM species) with a CV of 36.8% vs 59.5% in the GRooT database. For morphological root traits, there were greater variations in RTD (CV = 80.2% vs 68.5% in the GRooT database) and SRL (CV = 77.6% vs 181.5% in the GRooT database) than RD (CV = 16.0% in our data set vs 45.1% in the GRooT database). For root tissue C and N, the variation in RC (CV = 10.4% vs 16.6% in the GRooT database) was smaller than that in RN (CV = 25.3% vs 37.3% in the GRooT database). The very low value of RC observed in some species suggests that roots may have been contaminated

Table 1 Summary of absorptive root traits and phylogenetic signals (Blomberg’s K) for 112 tree species.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Abbreviation</th>
<th>Units</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>CV%</th>
<th>K value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branching intensity</td>
<td>BI</td>
<td>branches cm⁻¹</td>
<td>0.77</td>
<td>12.80</td>
<td>4.25</td>
<td>63.9</td>
<td>0.029</td>
</tr>
<tr>
<td>Cortex thickness</td>
<td>CT</td>
<td>mm</td>
<td>0.04</td>
<td>0.32</td>
<td>0.18</td>
<td>36.8</td>
<td>0.044</td>
</tr>
<tr>
<td>Root diameter</td>
<td>RD</td>
<td>mm</td>
<td>0.31</td>
<td>0.62</td>
<td>0.38</td>
<td>16.0</td>
<td>0.080</td>
</tr>
<tr>
<td>Root tissue density</td>
<td>RTD</td>
<td>g cm⁻³</td>
<td>0.04</td>
<td>0.97</td>
<td>0.26</td>
<td>80.2</td>
<td>0.018</td>
</tr>
<tr>
<td>Specific root length</td>
<td>SRL</td>
<td>m g⁻¹</td>
<td>7.78</td>
<td>303.96</td>
<td>69.27</td>
<td>77.6</td>
<td>0.014</td>
</tr>
<tr>
<td>Root nitrogen concentration</td>
<td>RN</td>
<td>%</td>
<td>0.81</td>
<td>2.63</td>
<td>1.78</td>
<td>25.3</td>
<td>0.080</td>
</tr>
<tr>
<td>Root carbon concentration</td>
<td>RC</td>
<td>%</td>
<td>28.28</td>
<td>50.73</td>
<td>42.30</td>
<td>10.4</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Max, maximum value of the trait; Min, minimum value of the trait.

Values (mean, n = 112); the significant K values are in bold (P < 0.05).
with soil minerals, especially in ECM roots that are harder to clean, with potential effects on associated values of those mass-related traits.

There were no significant phylogenetic signals for the two symbiotic traits that are most indicative of root construction trade-offs with fungal association (CT for AM trees vs BI for ECM trees) when all species were analysed as well as when analyses were run within mycorrhizal types based on Blomberg’s K values ($P > 0.05$; Table 1). Root diameter and RN were influenced by plant phylogeny and exhibited higher phylogenetic conservatism than other root traits (Table 1). For instance, gymnosperms and species in the Magnoliids tended to have thicker roots with higher RN, while species belonging to the more recently evolved clades like the Rosids showed the opposite patterns (Fig. 3). Also, similar patterns of phylogenetic influence were observed when separating all species into different mycorrhizal groups, except for root diameter that had a marginally significant phylogenetic signals for AM species ($P = 0.073$, Table S4).

Bivariate relationships among root traits

Our results from the phylogenetically corrected bivariate trait relationships, particularly for those related to symbiotic interactions and RN, showed striking differences when performed on all species vs on separate mycorrhizal groups (Figs 4, S1, S2). Statistically significant correlations were found among BI, CT and root diameter, with BI decreasing linearly with both CT and root diameter for all species ($r^2 = 0.04$, $P < 0.05$ and $r = 0.40$, $P < 0.001$, respectively; Fig. 4) and for AM species only ($r^2 = 0.07$, $P < 0.05$ and $r^2 = 0.22$, $P < 0.001$, respectively; Fig. S1). However, for ECM species, we found negative relationships between BI and root diameter ($r^2 = 0.15$, $P < 0.05$) and between CT and SRL ($r^2 = 0.12$, $P < 0.05$) (Fig. S2). Additionally, RTD was negatively correlated with SRL ($r^2 = 0.95$, $P < 0.001$; Fig. 4) for all species, and this correlation showed similar patterns for both AM ($r^2 = 0.93$, $P < 0.001$; Fig. S1) and ECM ($r^2 = 0.96$, $P < 0.001$; Fig. S2) species, separately. RN was negatively correlated with BI ($r^2 = 0.04$, $P < 0.05$) for all species, but had no significant relationships with BI when taking a close look at mycorrhizal type.

Multivariate ordination RES

In accordance with other research on the RES, the pattern of multivariate ordination was represented by two independent axes (dimensions) since the eigenvalues of the first two principal components were >1 for all species (Table S5). The results of pPCA showed that the first two axes accounted for 55.5% of total variation for all species. The first axis was best described by SRL and RTD, while the second axis was represented by root diameter, BI and CT (Fig. 5a,b; Table S5). The results of the ANOVA analysis on the second axis scores of AM vs ECM species from the result of pPCA for all species indicated a significant influence of mycorrhizal type on RES axis too ($P < 0.001$; Table S6). We found a similar pattern of RES among AM species to that among all species with the first two axes explaining 31.3% and 27.3% of total variations (Fig. 5c,d; Table S5). For ECM species, the first axis was also driven by SRL and RTD, explaining 32.5% of total variation, while the second axis was mostly driven by BI, RD and RN, explaining 19.6% of total variation (Fig. 5e,f; Table S5). A similar pattern was found for ECM angiosperms (i.e. when excluding gymnosperms from the ECM group) with a shift in the location of root diameter from the second axis to the first axis (Table S5; Fig. S3).

Linkages of root traits and RES with edaphic nutrients

We found divergent correlations between root traits and soil nutrient availability for all species and for species belonging to the different mycorrhizal groups (Table S7). Branching intensity was positively correlated with soil nitrate concentrations for AM species ($r = 0.38$, $P < 0.001$; Table S7), but was negatively correlated with soil available P and nitrate concentrations for ECM species ($r = -0.48$, $P < 0.01$ and $r = -0.43$, $P < 0.01$, respectively; Table S7). CT was negatively correlated with concentrations of available P and nitrate for all species ($r = -0.23$, $P < 0.05$ and $r = -0.24$, $P < 0.05$, respectively; Table S7) and AM species ($r = -0.34$, $P < 0.01$ and $r = -0.37$, $P < 0.001$, respectively; Table S7). Branching intensity and CT were unrelated to soil ammonium availability for all species (Table S7).

Consistent with these relationships between soil available nutrients and root traits, we observed several significant relationships between our pPCA axes and soil nutrient availability (Fig. 5; Table S8). For AM species, we found a significant tendency towards greater CT and root diameter on the second axis with decreasing soil availability of P ($r^2 = 0.05$, $P < 0.05$, Fig. 5d; Table S8) and nitrate ($r^2 = 0.08$, $P < 0.05$). By contrast, ECM species showed significant tendency towards increased BI on the second axis with decreasing soil availability of P ($r^2 = 0.17$, $P < 0.05$, Fig. 5f; Table S8) and nitrate ($r^2 = 0.15$, $P < 0.05$). We found no significant relationships of the second axis with any soil nutrient factor for all species (Fig. 5b; Table S8). Additionally, we found a significant tendency towards higher RTD on the first axis with decreasing soil nitrate availability for all species and AM species ($r^2 = 0.06$, $P < 0.01$ and $r^2 = 0.06$, $P < 0.05$, respectively; Fig. 5a,c; Table S8), but decreasing soil P availability for ECM species ($r^2 = 0.13$, $P < 0.05$, Fig. 5e; Table S8). Soil ammonium availability was not correlated with either of the two axes for all species and both mycorrhizal types (Table S8).

Discussion

Building on a recent global representation of the RES, we demonstrate the context dependency of the RES as a conceptual framework. Specifically, we reveal two functionally independent (‘root-lifespan’ vs ‘fungal-symbiosis’) dimensions that differ from previous representations of the RES. First, a dimension reflecting aspects of resource ‘conservation’, hereafter called the ‘root-lifespan’ dimension to differentiate it from the ‘conservation’ axis described by Bergmann et al. (2020), which is characterized by a trade-off between SRL and RTD – two key traits that are associated with root construction strategy – rather than a trade-off between RTD and RN. Second, the ‘fungal-symbiosis’
dimension, which is best characterized by the direct (BI and CT) and indirect (root diameter) symbiotic traits, rather than a simple collaboration axis characterized by a trade-off between SRL and root diameter (Bergmann et al., 2020). This refined perspective of the RES adds two traits which differentiate AM and ECM mycorrhizal pathways (Fig. S4) on root functional morphologies. Additionally, two major changes distinguish our findings from these of Bergmann et al. (2020): the absence of RN along our ‘root-lifespan’ axis and the sharp decoupling of SRL with the ‘fungal-symbiosis’ axis.

Fig. 3 Plant phylogeny influences on key root economics traits. The inside diagram displays the phylogenetic tree of 112 tree species. The bottom colours for Latin names represent different clades, and circles at the tip of the phylogenetic branch denote mycorrhizal type coloured in blue for arbuscular mycorrhizal (AM) species or in orange for ectomycorrhizal (ECM) species. For the outside diagram, the standardized values of root economics traits involved in trait interplay are mapped onto each species with values ranging from low (green) to high (purple). Root diameter (RD) exhibits the highest phylogenetic conservatism among these root traits (Table 1). Specific information about clade and mycorrhizal type for each species is exhibited in Supporting Information Table S1. BI, branching intensity; CT, cortex thickness; RTD, root tissue density; SRL, specific root length.
At the root-system level, root economics operate on plant-derived C (‘capital’) and soil-derived nutrients (‘commodities’), leading to a trade-off between C investment and nutrient return (Bloom et al., 1985). Although both SRL and RTD are associated with the rate of return per unit of investment, they represent opposite directions based on the theoretical formula:

\[\text{SRL} = \frac{4}{\pi \times \text{RTD} \times \text{root diameter}^2} \]

(Ryser, 1996; Ostonen et al., 2007) or empirical trade-off relationships (Ma et al., 2018; Zhou et al., 2018; Han & Zhu, 2021). These traits have traditionally been regarded as the belowground equivalent of aboveground specific leaf area and leaf tissue density that locate at the two ends of the one-dimensional ‘fast-slow’ leaf economics spectrum (Ryser, 1996).
Fig. 5 Fertility-driven root economics pattern varies with mycorrhizal type. Root trait biplots of phylogenetically informed principal component analyses (leaf diagram) for (a, b) all 112 tree species; (c, d) 77 arbuscular mycorrhizal (AM) species (blue circle); (e, f) 35 ectomycorrhizal (ECM) species (orange circle). The ‘root-lifespan’ dimension is characterized by specific root length (SRL) and root tissue density (RTD), while the ‘fungal-symbiosis’ dimension is predominated by cortex thickness (CT) and/or branching intensity (BI), depending on mycorrhizal type. Along with the two direct symbiotic traits, root diameter (RD) also loads on the ‘fungal-symbiosis’ dimension representing the outcome of the interplay between morphological and symbiotic root traits. Edaphic fertility is embedded into the biplots to indicate the influences of different soil nutrients on root economics with colour gradients from dark green (low NO$_3^-$) to light green (high NO$_3^-$), from dark grey (low AP) to light grey (high AP) and from dark brown (low AP + NO$_3^-$) to light brown (low AP + NO$_3^-$). The linear regressions are fitted (right diagram) between soil nutrient availability and axis loadings along the ‘root-lifespan’ dimension (PC1) for all species (a), AM species alone (c), ECM species alone (e) as well as along ‘fungal-symbiosis’ dimension (PC2) for all species (b), AM species alone (d) and ECM species alone (f). See Supporting Information Table S5 for the loading scores of the two dimensions and Table S8 for more details about the linear regression results. AP, available soil phosphorus concentration; NO$_3^-$, soil nitrate concentration; PC, principal component; RC root carbon concentration; RN, root nitrogen concentration.
Belowground, species with an ‘acquisitive root strategy’ tend to develop absorptive roots with higher SRL and shorter lifespan (McCormack et al., 2012), while species with a conservative root strategy tend to develop absorptive roots with higher RTD and longer lifespan (Ryser, 1996; Eisenstat et al., 2000). Therefore, the ‘root-lifespan’ dimension of the RES represents a meaningful shift from high SRL to high RTD and depicts a belowground acquisition–conservation trade-off for tree species. The strong relationship between SRL and RTD could be due to the low variability in root diameter, with SRL being mostly defined by RTD (Fig. 2b).

Patterns of variation in absorptive root diameter from the current study (Table 1) differ markedly from previously published global patterns of variation in fine root (<2 mm) diameter for woody species (CV = 45.1%, Table S3; Fig. S5) in the GRooT database (Guerrero-Ramírez et al., 2021), which may cause the contrasting RES patterns. As such, the ‘root-lifespan’ dimension could be sensitive to root diameter variation, particularly when incorporating multiple root categorizations for woody species. Given that only a small share (c. 37%) of data in the GRooT database comes from absorptive roots, further studies with more standardized root categorization (e.g. absorptive roots) are needed to determine the general pattern of the RES.

The reasons why RN does not align with the axis of RTD variation, as observed across the global GRooT database (Guerrero-Ramírez et al., 2021) used by Bergmann et al. (2020) accounting for 7% shared variation between RN and RTD, remain unclear to us as this trend appeared consistent across their subset of woody species. Moreover, RN varied substantially in our data, although variation was smaller than in the GRooT data set (CV = 37.3%, Table S3; Fig. S5). One potential reason may relate to our focus on absorptive roots of the first and second orders, according to the most recent functional categorization of roots (McCormack et al., 2015), whereas the GRooT database includes a majority of root data representative of the historical focus on roots < 2 mm. Since roots of the most distal orders are known to be the most metabolically active and display higher RN concentrations than higher-order roots (Iversen et al., 2017; Freschet et al., 2021a), the RN gradient in Bergmann et al. (2020) could represent to some extent a gradient of more to less metabolically active sets of fine roots, which could explain some of the observed covariation with RTD. Indeed, inclusion of higher root orders should lead to both lower RN and higher RTD (Freschet & Roumet, 2017). Nonetheless, the negative correlation between RN and RTD was also observed on data from first-order roots only (6% shared variation; Ma et al., 2018).

Another potential reason might relate to the context dependency of the RN and root-lifespan relationship. RN scales with root metabolism (e.g. respiration, nutrient acquisition and assimilation rates), and the nutritional value of root tissue for primary consumers (Freschet et al., 2021b). However, it is also strongly influenced by excess nutrient uptake and N storage, with variable outcomes depending on environmental conditions, and could therefore display a partly orthogonal orientation to root lifespan. Some of the N found in root tissues can be further associated with the capacity of roots to transport water and elements and thus partly positively covaries with stele fraction and RTD. Additionally, N is common in herbivore and pathogen defence compounds in roots and thus is partly associated positively with root lifespan (Guo et al., 2008a). Finally, N is also found in higher concentration in mycorrhizal fungi tissues than in the root tissues (Langley & Hungate, 2003), suggesting that roots with high mycorrhizal colonization intensity are likely to display high RN. This is despite the fact that mycorrhiza formation can increase plant resistance to soil pathogens and herbivores (Jung et al., 2012; Babikova et al., 2014). Therefore, while we do see some evidence, both conceptually and in the literature, to describe root-lifespan axis along a continuum from high RTD to high RN, we also see multiple reasons why the alignment of the root-lifespan axis with root N concentration may vary across environments.

Importantly, root trait trade-offs are not necessarily bivariate and can be highly complex, involving multiple trait interactions at the root-system level (i.e. trait interplay, Fig. 2b). For example, root diameter and SRL have been shown to correlate positively and negatively with root lifespan, respectively (Eisenstat et al., 2000; McCormack et al., 2012), although their main contribution may appear limited along the single collaboration axis in simplified representations of the RES. Here, we included BI and CT, traits that are more directly related to mycorrhizal symbioses compared to root diameter, finding additional trade-offs among these three traits (Fig. 4). Consistent with our hypothesis, CT and BI that are most directly associated with mycorrhizal symbioses pathways loaded evidently on the ‘fungal-symbiosis’ dimension, which varied with mycorrhizal type (Table S6). Root cortex tissue provides the main habitat for AM fungi to grow hyphae for nutrient foraging (Comas et al., 2014), explaining the emergence of CT on the ‘fungal-symbiosis’ dimension for AM species. We noticed that large CT fractions and high BI represented opposite sides on the ‘fungal-symbiosis’ dimension for AM species (Fig. 5c,d; Table S5), which was further evidenced by the negative relationship between these two traits (Fig. S1; also see Kong et al., 2014). This pattern points to a trade-off between nutrient acquisition strategies given the intracellular symbiosis pathway of AM species. Larger CT on the ‘fungal-symbiosis’ dimension indicates a fungal-symbiosis dependency in root strategy, where plants invest more C to expand cortical space for increased habitat availability for AM fungi at the cost of reduced conductivity of water flow into the roots (Wen et al., 2019). On the contrary, for AM tree species, larger BI indicates a self-dependent strategy in allocation towards construction of longer and more ramified roots, which are better able to exploit soil volume by themselves (Freschet & Roumet, 2017; Wen et al., 2019). Interestingly, this refined ‘fungal-symbiosis’ dimension is relatively well captured by root diameter alone, which covaries negatively with BI and positively with CT, highlighting the key role of root diameter in defining root economics strategy.

Compared to AM species, ECM species (except gymnosperms) have reduced the dependence on the root cortex but have relied more on the branching structure for symbiosis (Smith & Read, 2008; Martin et al., 2016). Consistent with this evolutionary shift, BI rather than CT loaded on the ‘fungal-symbiosis’ dimension for ECM species (Fig. 5e,f; Table S5). This is not surprising when taking a closer look at co-evolution of the ECM symbiosis pathway. In

New Phytologist (2022)
www.newphytologist.com © 2022 The Authors
New Phytologist © 2022 New Phytologist Foundation
ECM angiosperms, hyphae grow attached to epidermal cells of emerging lateral roots to form the intercellular Hartig net and sheathing mantle (Kottek et al., 1987; Smith & Read, 2008; Martin et al., 2016). Compared with AM symbiosis, the maintenance of these unique structures is believed to consume more C, thus demanding more C supply transporting through sieve tubes (Smith & Read, 2008; Kong et al., 2021). The greater branching may enable larger surface area contacting with sieve tubes to gain allocated C for mycorrhizal symbiosis, leading to the compression of root cortex space. Although ECM gymnosperms have similar symbiosis pathway to AM species, CT was still absent on the ‘fungal-symbiosis’ dimension, possibly resulting from the limited sample size of Pinaceae (n = 7, 20% of the total). Root diameter shifted from the ‘fungal-symbiosis’ dimension to the ‘root-lifespan’ dimension when excluding ECM gymnosperms, further confirming the independence of ECM angiosperms on traits associated with root thickness (Table S5; Fig. S3). Unlike the trade-off between CT and BI in AM species, the branching traits may represent a higher probability of root tip colonization by ECM fungi as well as a potential feedback mechanism of ECM fungal colonization on root architecture (Comas et al., 2014; van der Heijden et al., 2015; Martin et al., 2016; Tedersoo & Brundrett, 2017).

Interestingly, root diameter in parallel to the two direct symbiotic traits defined the ‘fungal-symbiosis’ dimension, although it is inherently associated with SRL and RTD (Fig. 5; Table S3). This pattern likely arises due to two reasons. First, relationships among diameter-related traits are nonlinear (Ma et al., 2018; Kong et al., 2019). RTD is independent of (Kramer-Walter et al., 2016; Bergmann et al., 2020), or coaxial with SRL in the RES (Kong et al., 2014), and can have variable relationships with root diameter (Withington et al., 2006; Comas & Eisenstat, 2009; Kramer-Walter et al., 2016). According to the formula illustrated above, the bivariate relationships among these traits are most likely negative or neutral, depending on the magnitude of trait covariation (Bergmann et al., 2020). Based on their globally high RTD and low SRL values (Freschet & Roumet, 2017), tree species are likely to be relying relatively strongly on mycorrhizal partners, therefore contributing less than other plant functional types to a trade-off between high SRL ‘do-it-yourself’ strategy and high root diameter ‘outsourcing’ strategy. Second, in addition to hydraulic- and mechanical-related functions, root diameter represents a multifunctional trait associating with both root-lifespan and fungal-symbiosis (Fig. 2; Mao et al., 2018; Jiang et al., 2020). The role of root diameter in root economics may thus result from the interplay between morphological and symbiotic root traits (Fig. 2). It has been reported that more than 80% of the variation in diameter of absorptive roots can be explained by CT in woody species (Gu et al., 2014; Kong et al., 2019). This pattern was also confirmed by the positive relationship between root diameter and CT (Fig. 4), indicating that within the data analysed here, root diameter tends to be more directly linked to symbiotic traits than to other morphological traits (i.e. SRL and RTD).

Although CT diverged from root diameter on the ‘fungal-symbiosis’ dimension for ECM species, a trade-off appeared between root diameter and BI (Figs 5e,f, S2), implying that thinner-rooted ECM species had more branching and vice versa. Ectomycorrhizal fungi have co-evolved divergent soil exploration and nutrient use strategies in complementarity with root morphologies (Agerer, 2001; Tedersoo & Smith, 2013). Ectomycorrhizal fungal groups with a long-distance exploration (i.e. long hyphae) are commonly associated with thicker root species to compensate for the deficiency in nutrient exploitation of these species (Liu et al., 2015). By contrast, ECM species with thinner roots and more branching tend to associate with short-distance soil exploring fungal taxa (i.e. those with short fungal hyphae), which demand less construction and maintenance costs (Chen et al., 2018). For instance, trees in the Pinaceae family have relatively thick roots and can associate with rhizomorphic hyphae that explore longer distance into the surrounding soil (Agerer, 2001). Consistently, ECM gymnosperms (i.e. Pinaceae in this study) had larger root diameters and lower BIs than ECM angiosperms (Table S9). The trade-off between root diameter and BI persisted when excluding gymnosperms from the ECM group (Table S5; Fig. S3), implying the robustness of this trade-off among ECM species. Overall, these findings jointly highlight that the type of mycorrhizal symbiosis acts as a critical driver to the complexity of root economics owing to the contrasting evolutionary history and symbiosis pathways between AM and ECM species.

The symbiosis intensity lies in the resource needs of the symbiotic partners, which is fundamentally mediated by the soil matrix. Plants can establish symbioses with mycorrhizal fungi to forage immobile soil P (van der Heijden et al., 2015; Liu et al., 2018). The tight linkages between the ‘fungal-symbiosis’ dimension and soil P availability for both AM and ECM species (Fig. 5d,f; Table S8) support that edaphic fertility drives, at least to some extent, the position of plant species within the multidimensional RES (Ding et al., 2020). These relationships were clearly dominated by symbiotic root traits, as revealed by the negative relationships of soil available P concentration with CT for AM species and with BI for ECM species (Table S7). Thus, soil P availability can shape the ‘fungal-symbiosis’ dimension of the RES for both mycorrhizal types. Soil nitrate availability presented similar correlations with this dimension for both AM and ECM species (Fig. 5d,f; Table S7). This synergy could relate to the close linkage between soil nitrate and P concentrations (Fig. 5) or highlight the importance of mycorrhizal fungi in plant acquisition of N (Hodge, 2004; Miller & Cramer, 2005; Treseder, 2013). We included species from subtropical and temperate forests where soil ammonium and nitrate availability varied greatly (Table S10). The young soils that originate from volcanic parent material in temperate forests typically have high levels of nitrate, while the older highly weathered soils in subtropical forests show higher levels of ammonium than nitrate (Table S10). Despite this, it seems that the dominant form of N has limited effect on the RES.

The ‘root-lifespan’ dimension of the RES was driven by soil P availability in ECM species but by soil nitrate availability in AM species (Fig. 5c; Table S8). The observed negative relationships between the ‘root-lifespan’ dimension and soil fertility suggest that plants tend to employ a conservative strategy by increasing cell wall fraction and thus RTD for extending root lifespan under
infertile habitats (Eissenstat & Yanai, 1997; Ding et al., 2020). The distinct controls of soil nitrate and P availability over the ‘root-lifespan’ dimension of AM and ECM species could be related to the contrasting nutrient economies between mycorrhizal types (Phillips et al., 2013). Different from the organic-nutrient ECM species, AM species are assumed to specialize in inorganic nutrient uptake, given the limited saprotrophic ability of most AM fungi (Smith & Read, 2008). In addition, our results suggest that, independent of plant reliance on mycorrhizal symbiosis intensity, AM species may increasingly rely on thin nonmycorrhizal roots to acquire nitrate in conditions of high nitrate availability, whereas ECM species may rely more largely on mycorrhizal symbiosis. Although AM and ECM trees exhibit similar abilities to acquire mineral P, ECM fungi may have an advantage of immobile P acquisition over longer distances and from organic sources (Tedersoo & Bahram, 2019), which may offset the costly maintenance of the ECM structures (Phillips et al., 2013). One may thus expect that ECM species tend to construct roots with higher RTD to extend root lifespan and symbiotic partnership with soil fungi for maximizing P acquisition in P-deficient soils (Kramer-Walter et al., 2016; Kou et al., 2017). However, the relationships of edaphic fertility with morphological traits and the RES were overall weak (Fig. 5; Tables S7, S8), which may point towards the influence of other belowground interactions on the RES. For example, interspecific root interactions, root–pathogen–herbivore interactions and root phosphatase (Valverde-Barrantes et al., 2013; Bardgett et al., 2014; Han et al., 2022) may likewise shape the structure of the RES.

In conclusion, by elaborating on root trait–function linkage and fertility-driven root trait interplay, we demonstrate a bidimensional RES based on root functions: root-lifespan vs fungal-symbiosis, and provide a refined framework for theoretical and mechanistic understanding of the complexity of root economics within tree species. Irrespective of mycorrhizal type, the ‘root-lifespan’ dimension rendered by SRL and RTD depicts a resource acquisition–conservation trade-off representing the maintenance of root lifespan along the edaphic fertility gradient. Interestingly, the ‘fungal-symbiosis’ dimension characterized by the direct (BI and CT) and indirect (root diameter) symbiotic traits differs between AM and ECM species or even possibly between angiosperms and gymnosperms within ECM groups. These fundamental divergences have likely resulted from the contrasting evolutionary history and symbiosis pathways between mycorrhizal groups. Arbuscular fungi co-evolved with a large habitat dependence of a thicker root cortex, but increased root branching was prioritized for ECM angiosperms. Importantly, the availability of soil P and nitrate are key determinants for shaping the RES, particularly the ‘fungal-symbiosis’ dimension via potentially differentiating root–fungi symbiosis intensity among species. Formal testing of the hypothesis that increased root colonization by ECM fungi is related to higher root branching should therefore be a key priority of future research in this area. Overall, our findings suggest that root–fungi symbiosis pathways and soil fertility have jointly influenced root trait variation, which underpins the role of complex belowground interactions in framing root economics.

Acknowledgements
This research was financially supported by grants from the National Natural Science Foundation of China (nos. 31730014, 32071557, 41830646, 31700377). We are grateful to the editor Richard J. Norby and three anonymous reviewers for their helpful comments and suggestions.

Author contributions
LK and HY conceived the ideas and designed the study. HY performed the experiments, collected the data, performed data analyses and drew the graphics. LK, HY and GTF led the writing of the manuscript. HW, JAH, SL, OJV-B, XF, RW, XD, LJ, SM, FY and MZ substantially contributed to writing the manuscript. All authors contributed critically to the drafts and gave final approval for publication.

ORCID
Grégoire T. Freschet https://orcid.org/0000-0002-8830-3860
Xiaoli Fu https://orcid.org/0000-0001-9116-4745
James Aaron Hogan https://orcid.org/0000-0001-9806-3074
Liang Kou https://orcid.org/0000-0002-2187-0721
Oscar J. Valverde-Barrantes https://orcid.org/0000-0002-7327-7647
Ruili Wang https://orcid.org/0000-0002-0384-7739
Han Yan https://orcid.org/0000-0002-4578-8407

Data availability
All data supporting the findings of this study can be accessed in Dryad, doi: 10.5061/dryad.j0zpc869s (Yan et al., 2022).

References

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article.

Fig. S1 Pairwise correlations among seven root economics traits for arbuscular mycorrhizal species.

Fig. S2 Pairwise correlations among seven root economics traits for ectomycorrhizal species.

Fig. S3 Root economics pattern for ectomycorrhizal angiosperms.

Fig. S4 The test of the root economics space using the four traits RD, RTD, SRL and RN in Bergmann et al. (2020).

Fig. S5 Density histograms of woody species root trait distribution of our own data on absorptive roots as compared to those of fine root (diameter < 2 mm) traits from the GRooT database.

Table S1 Species information in the study.

Table S2 Loading scores of phylogenetically informed principal component analysis of root traits for all species, arbuscular mycorrhizal species and ectomycorrhizal species based on the corrected root tissue density data (carbon basis).

Table S3 Summary of the seven root traits used in this study based on the GRooT database.

Table S4 Blomberg’s K value of root traits for arbuscular mycorrhizal (n = 77) and ectomycorrhizal (n = 35) species.

Table S5 Results of phylogenetically informed principal component analysis of root traits for all species, arbuscular mycorrhizal species, ectomycorrhizal (ECM) species and ECM angiosperms.

Table S6 One-way ANOVA analysis on the effect of mycorrhizal type on scores of ‘fungal-symbiosis’ dimension of 112 tree species.

Table S7 Coefficients of Pearson’s correlation for linkages of root traits with edaphic nutrients for all species, arbuscular mycorrhizal species and ectomycorrhizal species.

Table S8 Results of the general linear regression between principal component scores and edaphic nutrients.

Table S9 Student’s t-test evaluating the differences in root traits between angiosperms (n = 28) and gymnosperms (n = 7) of ectomycorrhizal species.

Table S10 Student’s t-test evaluating differences in soil nutrient availability between species from subtropical (n = 64) and temperate (n = 48) forests.

Please note: Wiley Blackwell is not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.